Skip to main content

Spectrum Sharing in Cognitive Radio Enabled Smart Grid: A Survey

  • Conference paper
  • First Online:
Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications (CloudComp 2019, SmartGift 2019)

Abstract

Smart grid is viewed as the next-generation electric power system to meet the demand of communication and power delivery in an intelligent manner. With large scale deployment of electric power systems, smart grid faces the challenge from large volume data and high spectrum needs. To realize efficient spectrum utilization in the fact of spectrum scarcity, cognitive radio (CR) is involved in smart grid and generates the cognitive radio enabled smart grid. Cognitive radio enabled smart grid coexists with primary network by employing CR technologies including spectrum sensing, sharing, access and so on. Spectrum sharing is an important CR technology which realizes network coexistence without harmful interference through radio resource allocation. In this paper, a comprehensive survey is provided to review the state-of-the-art researches on spectrum sharing in cognitive radio enabled smart grid. We identify the network architecture and communication technology issues of cognitive radio enabled smart gird, and illustrate the investigation of spectrum sharing in different radio resource dimensions to highlight the superiority in efficient spectrum utilization.

This work was supported by the National Natural Science Foundation of China under Grant No. 61901043, and by the Research Fund of Beijing Information Science and Technology University No.1925012, 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan, A.A., Rehmani, M.H., Reisslein, M.: Cognitive radio for smart grids: survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Commun. Surv. Tutor. 18(1), 860–898 (2016)

    Article  Google Scholar 

  2. You, M., Liu, Q., Sun, H.: New communication strategy for spectrum sharing enabled smart grid cyber-physical system. IET Cyber-Phys. Syst. Theory Appl. 2(3), 136–142 (2017)

    Article  Google Scholar 

  3. Yu, R., Zhang, C., Zhang, X., et al.: Hybrid spectrum access in cognitive-radio-based smart-grid communications systems. IEEE Syst. J. 8(2), 577–587 (2014)

    Article  MathSciNet  Google Scholar 

  4. Islam, S.N., Mahmud, M.A., Oo, A.T., et al.: Interference management for cognitive radio enabled smart grid communication. In: IEEE Pes Asia-pacific Power & Energy Engineering Conference. IEEE (2018)

    Google Scholar 

  5. Ghassemi, A., Bavarian, S., Lampe, L.: Cognitive radio for smart grid communications. In: Proceedings of IEEE SmartGridComm, Gaithersburg, MD, USA, pp. 297–302 (2010)

    Google Scholar 

  6. Peng, Y., Wang, P., Xiang, W., Li, Y.: Secret key generation based on estimated channel state information for TDD-OFDM systems over fading channels. IEEE Trans. Wirel. Commun. 16(8), 5176–5186 (2017)

    Article  Google Scholar 

  7. Alam, S., Aqdas, N., Qureshi, I.M., et al.: Clustering-based channel allocation scheme for neighborhood area network in a cognitive radio based smart grid communication. IEEE Access 6, 25773–25784 (2018)

    Article  Google Scholar 

  8. Long, H., Xiang, W., Zhang, Y., Liu, Y., Wang, W.: Secrecy capacity enhancement with distributed precoding in multirelay wiretap systems. IEEE Trans. Inf. Forensics Secur. 8(1), 229–238 (2012)

    Article  Google Scholar 

  9. Hiew, Y.K., Aripin, N.M., Din, N.M.: Asynchronous iterative water filling for cognitive smart grid communications. In: Computer Applications & Industrial Electronics. IEEE (2015)

    Google Scholar 

  10. Xiang, W., Barbulescu, S.A., Pietrobon, S.S.: Unequal error protection applied to JPEG image transmission using turbo codes. In: Proceedings 2001 IEEE Information Theory Workshop (Cat. No. 01EX494), pp. 64–66 (2001)

    Google Scholar 

  11. Dehalwar, V., Kolhe, M., Kolhe, S.: Cognitive radio application for smart grid. Int. J. Smart Grid Clean Energy 1(1), 79–84 (2012)

    Article  Google Scholar 

  12. Le, T.N., Chin, W.L., Chen, H.H.: Standardization and security for smart grid communications based on cognitive radio technologies – a comprehensive survey. IEEE Commun. Surv. Tutor. 19, 423–445 (2016)

    Google Scholar 

  13. Yu, R., et al.: Cognitive radio based hierarchical communication infrastructure for smart grid. IEEE Netw. 25(5), 6–14 (2011)

    Article  Google Scholar 

  14. Meng, W., Ma, R., Chen, H.-H.: Smart grid neighborhood area networks: a survey. IEEE Netw. 28(1), 24–32 (2014)

    Article  Google Scholar 

  15. Liu, F., Wang, J., Han, Y., Han, P.: Cogitive radio networks for smart grid communications. In: Proceedings of 9th Asian Control Conference (ASCC), Istanbul, Turkey, pp. 1–5 (2013)

    Google Scholar 

  16. Kouhdaragh, V., Tarchi, D., Coralli, A.V., et al.: Cognitive radio based smart grid networks. In: Tyrrhenian International Workshop on Digital Communications-green ICT. IEEE (2013)

    Google Scholar 

  17. Güngör, V.C., et al.: Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Informat. 7(4), 529–539 (2011)

    Article  Google Scholar 

  18. IEEE Standard 802.15.4 g, Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks, IEEE Standard 802.15.4 g (2012)

    Google Scholar 

  19. IEEE Standard 802.15.4e, Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment I: MAC Sublayer, IEEE Standard 802.15.4e (2012)

    Google Scholar 

  20. Kabouris, J., Kanellos, F.D.: Impacts of large-scale wind penetration on designing and operation of electric power systems. IEEE Trans. Sustain. Energy 1(2), 107–114 (2010)

    Article  Google Scholar 

  21. Ma, X., Li, H., Djouadi, S.: Networked system state estimation in smart grid over cognitive radio infrastructures. In: Proceedings of 45th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA (2011)

    Google Scholar 

  22. Bu, S., Yu, F.R.: Green cognitive mobile networks with small cells for multimedia communications in the smart grid environment. IEEE Trans. Veh. Technol. 63(5), 2115–2126 (2014)

    Article  Google Scholar 

  23. Cacciapuoti, A.S., Caleffi, M., Marino, F., et al.: Sensing-time optimization in cognitive radio enabling Smart Grid. In: Euro Med Telco Conference. IEEE (2014)

    Google Scholar 

  24. Deng, R., Maharjan, S., Cao, X., et al.: Sensing-delay tradeoff for communication in cognitive radio enabled smart grid. In: IEEE International Conference on Smart Grid Communications (SmartGridComm), 2011 (2011)

    Google Scholar 

  25. Hsiao, W.L., Chiu, W.Y.: Spectrum sensing control for enabling cognitive radio based smart grid. In: 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG) (2016)

    Google Scholar 

  26. Yang, S., Wang, J., Han, Y., et al.: Dynamic spectrum allocation algorithm based on fairness for smart grid communication networks. In: Control Conference. IEEE (2016)

    Google Scholar 

  27. Yang, S., Wang, J., Han, Y., et al.: Dynamic spectrum allocation algorithm based on matching scheme for smart grid communication network. In: IEEE International Conference on Computer & Communications. IEEE (2017)

    Google Scholar 

  28. Ma, R., Chen, H.H., Meng, W.: Dynamic spectrum sharing for the coexistence of smart utility networks and WLANs in smart grid communications. IEEE Netw. 31(1), 88–96 (2017)

    Article  Google Scholar 

  29. Aroua, S., El Korbi, I., Ghamri-Doudane, Y., Saidane, L.A.: Hierarchical fair spectrum sharing in CRSNsfor smart grid monitoring. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring) (2018)

    Google Scholar 

  30. Zhao, X., et al.: Spectrum allocation with differential pricing and admission in cognitive-radio-based neighborhood area network for smart grid. In: 2018 IEEE/IFIP Network Operations and Management Symposium (2018)

    Google Scholar 

  31. Jiang, T.: On-demand cognitive radio communications for smart grid. In: 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S. (2020). Spectrum Sharing in Cognitive Radio Enabled Smart Grid: A Survey. In: Zhang, X., Liu, G., Qiu, M., Xiang, W., Huang, T. (eds) Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications. CloudComp SmartGift 2019 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-48513-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48513-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48512-2

  • Online ISBN: 978-3-030-48513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics