Skip to main content

Data-Driven Fast Real-Time Flood Forecasting Model for Processing Concept Drift

  • Conference paper
  • First Online:
Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications (CloudComp 2019, SmartGift 2019)

Abstract

The hydrological data of small and medium watershed develops with the passage of time. The rainfall-runoff patterns in these data often develop over time, and the models established for the analysis of such data will soon not be applicable. In view of the problem that adaptability and accuracy of the existing data-driven flood real-time forecasting model in medium and small watershed with concept drift. We update the data-driven model using incremental training based on support vector machine (SVM) and gated recurrent unit (GRU) model respectively. According to the rapid real-time flood forecasting test results of the Tunxi watershed, Anhui Province, China, the fast real-time flood forecast data-driven model with incremental update can more accurately predict the moment when the flood begins to rise and the highest point of flood stream-flow, and it is an effective tool for real-time flood forecasting in small and medium watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danso-Amoako, E., Scholz, M., Kalimeris, N., Yang, Q., Shao, J.: Predicting dam failure risk for sustainable flood retention basins: a generic case study for the wider greater manchester area. Comput. Environ. Urban Syst. 36(5), 423–433 (2012)

    Google Scholar 

  2. Xie, K., Ozbay, K., Zhu, Y., Yang, H.: Evacuation zone modeling under climate change: a data-driven method. J. Infrastruct. Syst. 23(4), 04017013 (2017)

    Google Scholar 

  3. Mosavi, A., Bathla, Y., Varkonyi-Koczy, A.: Predicting the future using web knowledge: state of the art survey. In: Luca, D., Sirghi, L., Costin, C. (eds.) INTER-ACADEMIA 2017. AISC, vol. 660, pp. 341–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67459-9_42

    Google Scholar 

  4. Salas, J.D.: Applied Modeling of Hydrologic Time Series. Water Resources Publication, Littleton (1980)

    Google Scholar 

  5. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting. J. Math. Stat. 8(3), 330–338 (2012)

    Google Scholar 

  6. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Google Scholar 

  7. Xinying, Y., Liong, S.-Y.: Forecasting of hydrologic time series with ridge regression in feature space. J. Hydrol. 332(3–4), 290–302 (2007)

    Google Scholar 

  8. Adamowski, J., Chan, H.F., Prasher, S.O., Ozga-Zielinski, B., Sliusarieva, A.: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res. 48(1) (2012)

    Google Scholar 

  9. Tanty, R., Desmukh, T.S.: Application of artificial neural network in hydrology-a review. Int. J. Eng. Technol. Res 4, 184–188 (2015)

    Google Scholar 

  10. Taormina, R., Chau, K.-W., Sethi, R.: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 25(8), 1670–1676 (2012)

    Google Scholar 

  11. Sulaiman, J., Wahab, S.H.: Heavy rainfall forecasting model using artificial neural network for flood prone area. In: Kim, K.J., Kim, H., Baek, N. (eds.) ICITS 2017. LNEE, vol. 449, pp. 68–76. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6451-7_9

    Google Scholar 

  12. Nayak, M.A., Ghosh, S.: Prediction of extreme rainfall event using weather pattern recognition and support vector machine classifier. Theor. Appl. Climatol. 114(3), 583–603 (2013). https://doi.org/10.1007/s00704-013-0867-3

    Google Scholar 

  13. Granata, F., Gargano, R., de Marinis, G.: Support vector regression for rainfall-runoff modeling in urban drainage: a comparison with the EPA’s storm water management model. Water 8(3), 69 (2016)

    Google Scholar 

  14. Gong, Y., Zhang, Y., Lan, S., Wang, H.: A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resour. Manage. 30(1), 375–391 (2015). https://doi.org/10.1007/s11269-015-1167-8

    Google Scholar 

  15. Shu, C., Ouarda, T.B.M.J.: Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol. 349(1–2), 31–43 (2008)

    Google Scholar 

  16. Sharma, S., Srivastava, P., Fang, X., Kalin, L.: Performance comparison of adoptive neuro fuzzy inference system (ANFIS) with loading simulation program C++ (LSPC) model for streamflow simulation in EI Niño Southern Oscillation (ENSO)-affected watershed. Expert Syst. Appl. 42(4), 2213–2223 (2015)

    Google Scholar 

  17. Tiwari, M.K., Chatterjee, C.: Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 394(3–4), 458–470 (2010)

    Google Scholar 

  18. Augusto, C., Santos, G., Barbosa, G., da Silva, L.: Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol. Sci. J. 59(2), 312–324 (2014)

    Google Scholar 

  19. Partal, T.: Wavelet regression and wavelet neural network models for forecasting monthly streamflow. J. Water Clim. Change 8(1), 48–61 (2017)

    Google Scholar 

  20. Dehghani, M., Saghafian, B., Rivaz, F., Khodadadi, A.: Evaluation of dynamic regression and artificial neural networks models for real-time hydrological drought forecasting. Arab. J. Geosci. 10(12), 1–13 (2017). https://doi.org/10.1007/s12517-017-2990-4

    Google Scholar 

  21. Choubin, B., Zehtabian, G., Azareh, A., Rafiei-Sardooi, E., Sajedi-Hosseini, F., Kişi, Ö.: Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches. Environ. Earth Sci. 77(8), 1–13 (2018). https://doi.org/10.1007/s12665-018-7498-z

    Google Scholar 

  22. Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., Pradhan, B.: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 644, 954–962 (2018)

    Google Scholar 

  23. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Wavelet-bounded empirical mode decomposition for measured time series analysis. Mech. Syst. Signal Process. 99, 14–29 (2018)

    Google Scholar 

  24. Wang, W., Chau, K., Xu, D., Chen, X.-Y.: Improving forecasting accuracy of annual runoff time series using ARIMA Based on EEMD decomposition. Water Resour. Manage. 29(8), 2655–2675 (2015). https://doi.org/10.1007/s11269-015-0962-6

    Google Scholar 

  25. Al-Musaylh, M.S., Deo, R.C., Li, Y., Adamowski, J.F.: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Appl. Energy 217, 422–439 (2018)

    Google Scholar 

  26. Bai, Y., Chen, Z., Xie, J., Li, C.: Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 532, 193–206 (2016)

    Google Scholar 

  27. Liu, F., Xu, F., Yang, S.: A flood forecasting model based on deep learning algorithm via integrating stacked autoencoders with BP neural network. In: IEEE Third International Conference on Multimedia Big Data (BigMM), pp. 58–61. IEEE (2017)

    Google Scholar 

  28. Klotz, D., Kratzert, F., Herrnegger, M., Hochreiter, S., Klambauer, G.: Towards the quantification of uncertainty for deep learning based rainfall-runoff models (2019)

    Google Scholar 

  29. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

  30. Anderson, M.G.: Encyclopedia of Hydrological Sciences. Wiley, New York (2005)

    Google Scholar 

  31. Beven, K.J.: Rainfall-Runoff Modelling the Primer. Wiley, New York (2012)

    Google Scholar 

  32. Todini, E.: Rainfall-runoff models for real-time forecasting. In: Encyclopedia of Hydrological Sciences (2006)

    Google Scholar 

  33. Butts, M.P., Hoest Madsen, J., Refsgaard, J.C.: Hydrologic forecasting. In: Encyclopedia of Physical Science and Technology, pp. 547–566 (2003)

    Google Scholar 

  34. Sene, K.: Flash Floods: Forecasting and Warning. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-5164-4

    Google Scholar 

  35. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

    MATH  Google Scholar 

  36. Moreno-Torres, J.G., Raeder, T., Alaiz-RodríGuez, R., Chawla, N.V., Herrera, F.: A unifying view on dataset shift in classification. Pattern Recognit. 45(1), 521–530 (2012)

    Google Scholar 

  37. Tsymbal, A.: The problem of concept drift: definitions and related work. Comput. Sci. Dept. Trinity Coll. Dublin 106(2), 58 (2004)

    Google Scholar 

  38. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996). https://doi.org/10.1023/A:1018046501280

    Google Scholar 

  39. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)

    Google Scholar 

  40. Klinkenberg, R.: Learning drifting concepts: example selection vs. example weighting. Intell. Data Anal. 8(3), 281–300 (2004)

    Google Scholar 

  41. Song, G., Ye, Y., Zhang, H., Xu, X., Lau, R.Y.K., Liu, F.: Dynamic clustering forest: an ensemble framework to efficiently classify textual data stream with concept drift. Inform. Sci. 357, 125–143 (2016)

    MATH  Google Scholar 

  42. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    MATH  Google Scholar 

  43. Collobert, R., Bengio, S.: SVMTorch: support vector machines for large-scale regression problems. J. Mach. Learn. Res. 1, 143–160 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Tay, F.E.H., Cao, L.: Application of support vector machines in financial time series forecasting. Omega 29(4), 309–317 (2001)

    Google Scholar 

  45. Pontil, M., Mukherjee, S., Girosi, F.: On the noise model of support vector machines regression. In: Arimura, H., Jain, S., Sharma, A. (eds.) ALT 2000. LNCS (LNAI), vol. 1968, pp. 316–324. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40992-0_24

    Google Scholar 

  46. Dehghani, M., Saghafian, B., Nasiri Saleh, F., Farokhnia, A., Noori, R.: Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int. J. Climatol. 34(4), 1169–1180 (2014)

    Google Scholar 

  47. Bao, Y., Xiong, T., Zhongyi, H.: Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing 129, 482–493 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, L., Feng, J., Wu, Y., Hang, T. (2020). Data-Driven Fast Real-Time Flood Forecasting Model for Processing Concept Drift. In: Zhang, X., Liu, G., Qiu, M., Xiang, W., Huang, T. (eds) Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications. CloudComp SmartGift 2019 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-48513-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48513-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48512-2

  • Online ISBN: 978-3-030-48513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics