Skip to main content

Prediction of Future Appearances via Convolutional Recurrent Neural Networks Based on Image Time Series in Cloud Computing

  • Conference paper
  • First Online:
Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications (CloudComp 2019, SmartGift 2019)

Abstract

In recent years, cloud computing has become a prevalent platform to run artificial intelligence (AI) and deep learning applications. With cloud services, AI models can be deployed easily for the convenience of users. However, although cloud service providers such as Amazon Web Services (AWS) have provided various services to support AI applications, the design of AI models is still the key in many specific applications such as forecasting or prediction. For example, how to forecast the future appearance of ornamental plants or pets? To deal with this problem, in this paper we develop a convolutional recurrent neural network (CRNN) model to forecast the future appearance according to their past appearance images. Specifically, we study the problem of using the pine tree’s past appearance images to forecast its future appearance images. We use a plant simulation software to generate pine tree’s growing images to train the model. As a result, our model can generate the future appearance image of the pine tree, and the generated images are very similar to the true images. This means our model can work well to forecast the future appearance based on the image series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  2. Kemelmacher-Shlizerman, I., Suwajanakorn, S., Seitz, S.M.: Illumination-aware age progression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 3334–3341. IEEE (2014)

    Google Scholar 

  3. Suo, J., Zhu, S.-C., Shan, S., Chen, X.: A compositional and dynamic model for face aging. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 385–401 (2010)

    Article  Google Scholar 

  4. Tazoe, Y., Gohara, H., Maejima, A., Morishima, S.: Facial aging simulator considering geometry and patch-tiled texture. In: ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, Los Angeles, CA, USA, p. 90 (2012)

    Google Scholar 

  5. Pinheiro, P.H.O., Collobert, R.: Recurrent convolutional neural networks for scene labeling. ICML 4, 82–90 (2014)

    Google Scholar 

  6. Zihlmann, M., Perekrestenko, D., Tschannen, M.: Convolutional recurrent neural networks for electrocardiogram classification. In: Computing in Cardiology (CinC), Rennes, France. IEEE (2017)

    Google Scholar 

  7. Doersch, C.: Tutorial on variational autoencoders. Carnegie Mellon/UC, Berkeley. https://arxiv.org/abs/1606.05908. Accessed 13 Jul 2019

  8. Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and captions. In: 30th Conference on Neural Information Processing Systems, Barcelona, Spain, vol. 29. NIPS (2016)

    Google Scholar 

  9. Makhzani, A., Shlen, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: International Conference on Learning Representations (2016)

    Google Scholar 

  10. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  11. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  12. Goodfellow, I., Mirza, M., Courville, A., Bengio, Y.: Multi-prediction deep Boltzmann machines. In: Advances in Neural Information Processing Systems, pp. 548–556. NIPS (2013)

    Google Scholar 

  13. Mirza, M., Osindero, S.: Conditional generative adversarial nets. https://arxiv.org/. Accessed 24 June 2019

  14. Gers, F.A., Schmidhuber, J.: LSTM recurrent networks learn simple context free and context sensitive languages. IEEE Trans. Neural Networks 12(6), 1333–1340 (2001)

    Article  Google Scholar 

  15. Zuo, Z., et al.: Convolutional recurrent neural networks: learning spatial dependencies for image representation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, pp. 18–26. IEEE (2015)

    Google Scholar 

  16. Zheng, J., Wang, Y., Zhang, X., Li, X.: Classification of severely occluded image sequences via convolutional recurrent neural networks. In: IEEE Global Conference on Signal and Information Processing, Anaheim, CA, USA (2018)

    Google Scholar 

  17. Chen, L., Li, S.: Improvement research and application of text recognition algorithm based on CRNN. In: 2018 International Conference on Signal Processing and Machine Learning, New York, NY, USA, pp. 166–170. IEEE (2018)

    Google Scholar 

  18. Choi, K., Fazekas, G., Sandler, M., Cho, K.: Convolutional recurrent neural networks for music classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA. IEEE (2017)

    Google Scholar 

  19. L-studio 4.0 User’s Guide. http://algorithmicbotany.org/lstudio/

  20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep forward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  21. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceeding of the 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)

    Google Scholar 

  22. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Li, X. (2020). Prediction of Future Appearances via Convolutional Recurrent Neural Networks Based on Image Time Series in Cloud Computing. In: Zhang, X., Liu, G., Qiu, M., Xiang, W., Huang, T. (eds) Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications. CloudComp SmartGift 2019 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-48513-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48513-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48512-2

  • Online ISBN: 978-3-030-48513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics