Skip to main content

A Parallel Drone Image Mosaic Method Based on Apache Spark

  • Conference paper
  • First Online:
Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications (CloudComp 2019, SmartGift 2019)

Abstract

MapReduce has been widely used to process large-scale data in the past decade. Among the quantity of such cloud computing applications, we pay special attention to distributed mosaic methods based on numerous drone images, which suffers from costly processing time. In this paper, a novel computing framework called Apache Spark is introduced to pursue instant responses for the quantity of drone image mosaic requests. To assure high performance of Spark-based algorithms in a complex cloud computing environment, we specially design a distributed and parallel drone image mosaic method. By modifying to be fit for fast and parallel running, all steps of the proposed mosaic method can be executed in an efficient and parallel manner. We implement the proposed method on Apache Spark platform and apply it to a few self-collected datasets. Experiments indicate that our Spark-based parallel algorithm is of great efficiency and is robust to process low-quality drone aerial images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Distributed, versioned, image-oriented dataservice (dvid). http://github.com/janelia-flyem/dvid

  2. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007). https://doi.org/10.1007/s11263-006-0002-3

    Article  Google Scholar 

  3. Capel, D.: Image mosaicing and super resolution. Ph.D. thesis, University of Oxford (2004)

    Google Scholar 

  4. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commun. ACM 53(1), 72–77 (2010)

    Article  Google Scholar 

  5. Huang, W., Meng, L., Zhang, D., Zhang, W.: In-memory parallel processing of massive remotely sensed data using an Apache Spark on Hadoop YARN model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(1), 3–19 (2017)

    Article  Google Scholar 

  6. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of Computer Vision and Pattern Recognition, vol. 2, p. II. IEEE (2004)

    Google Scholar 

  7. Lee, J.N., Kwak, K.C.: A trends analysis of image processing in unmanned aerial vehicle. Int. J. Comput. Inf. Sci. Eng. 8(2), 2–5 (2014)

    Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  9. Lyu, M.R., Song, J., Cai, M.: A comprehensive method for multilingual video text detection, localization, and extraction. IEEE Trans. Circuits Syst. Video Techn. 15(2), 243–255 (2005)

    Article  Google Scholar 

  10. Ma, Y., et al.: Remote sensing big data computing: challenges and opportunities. Future Gener. Comput. Syst. 51, 47–60 (2015)

    Article  Google Scholar 

  11. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  12. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  13. Moravec, H.P.: Rover visual obstacle avoidance. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 785–790 (1981)

    Google Scholar 

  14. Plaza, S.M., Berg, S.E.: Large-scale electron microscopy image segmentation in spark. arXiv preprint arXiv:1604.00385 (2016)

  15. Rodriguez, A., Boddeti, V.N., Kumar, B.V.K.V., Mahalanobis, A.: Maximum margin correlation filter: a new approach for localization and classification. IEEE Trans. Image Process. 22(2), 631–643 (2013)

    Article  MathSciNet  Google Scholar 

  16. Taylor, G.W., Spiro, I., Bregler, C., Fergus, R.: Learning invariance through imitation. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 2729–2736 (2011)

    Google Scholar 

  17. Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator. In: Proceedings of ACM Symposium on Cloud Computing, pp. 5:1–5:16 (2013)

    Google Scholar 

  18. Wang, F.B., Tu, P., Wu, C., Chen, L., Feng, D.: Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser. Opt. Lasers Eng. 100, 124–130 (2018)

    Article  Google Scholar 

  19. Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)

    Google Scholar 

  20. Wang, L.M., Wu, Y., Tian, Z., Sun, Z., Lu, T.: A novel approach for robust surveillance video content abstraction. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo, C.-C.J., Lew, M.S. (eds.) PCM 2010. LNCS, vol. 6298, pp. 660–671. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15696-0_61

    Chapter  Google Scholar 

  21. Xin, R., Deyhim, P., Ghodsi, A., Meng, X., Zaharia, M.: Graysort on apache spark by databricks. GraySort Competition (2014)

    Google Scholar 

  22. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of 2nd USENIX Workshop on Hot Topics in Cloud Computing (2010)

    Google Scholar 

  23. Zhang, W., Li, X., Yu, J., Kumar, M., Mao, Y.: Remote sensing image mosaic technology based on SURF algorithm in agriculture. EURASIP J. Image Video Process. 2018(1), 1–9 (2018). https://doi.org/10.1186/s13640-018-0323-5

    Article  Google Scholar 

  24. Zhou, G., et al.: Paper infrared image retrieval of power equipment based on perceptual hash and surf. In: Proceedings of International Conference on Advanced Infocomm Technology (ICAIT), pp. 387–392. IEEE (2017)

    Google Scholar 

  25. Zhou, Z., Wang, Y., Wu, Q.J., Yang, C.N., Sun, X.: Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. 12(1), 48–63 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Ge, L., Luo, Y., Teng, D., Feng, J. (2020). A Parallel Drone Image Mosaic Method Based on Apache Spark. In: Zhang, X., Liu, G., Qiu, M., Xiang, W., Huang, T. (eds) Cloud Computing, Smart Grid and Innovative Frontiers in Telecommunications. CloudComp SmartGift 2019 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-48513-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48513-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48512-2

  • Online ISBN: 978-3-030-48513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics