Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 139))

Abstract

Further the large deformation problem of compliant mechanisms is investigated in this chapter. As has been discussed in Sect. 4.4.4, when a compliant mechanism is under a large external load, the corresponding stiffness matrix is no longer symmetric and invariant. However, its force equilibrium still holds the same and it is used here to explore the compliant mechanism’s large deformation properties. It is straight forward to conduct inverse force analysis of compliant serial mechanisms and forward force analysis of compliant parallel mechanisms. However, additional consideration is needed for compliant mechanisms that have mixed configurations. In accordance with this, a repelling-screw based force analysis approach is developed in this chapter, making it possible to conduct a forward force analysis of compliant mechanisms that have hybrid combinations of flexible elements. This proposed force-modelling approach is further applied to analyze the large deformation behaviours of origami-inspired compliant mechanisms. An origami-inspired compliant mechanism is a foldable structure that consists of both panels and creases, which can be treated as an equivalent mechanism by taking panels as links and creases as revolute joints. Thus an origami mechanism can be treated as a parallel mechanism with revolute joints. Section 8.2 presents a complete experimental test of single creases of origami folds, which reveals an origami crease can be treated as a one-DOF flexible element with embedded torsional stiffness. This paves the way for the further force analysis of origami compliant structures using the proposed repelling-screw based approach. The theoretical background of this approach is provided in Sect. 8.3 in the framework of screw theory, and it is utilized to conduct force analysis of several typical origami compliant platforms in the following Sects. 8.4 and 8.5 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanade, T.: A theory of origami world. Artif. Intell. 13(3), 279–311 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lang, R.J., Hull, T.C.: Origami design secrets: mathematical methods for an ancient art. Math. Intell. 27(2), 92–95 (2005)

    Google Scholar 

  3. Dai, J., Jones, J.R.: Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 216(10), 959–970 (2002)

    Article  Google Scholar 

  4. Dai, J., Caldwell, D.: Origami-based robotic paper-and-board packaging for food industry. Trends Food Sci. Technol. 21(3), 153–157 (2010)

    Article  Google Scholar 

  5. Howell, L.L.: Compliant Mechanisms. Wiley-Interscience (2001)

    Google Scholar 

  6. Carroll, D.W., Magleby, S.P., Howell, L.L., Todd, R.H., Lusk, C.P.: Simplified manufacturing through a metamorphic process for compliant ortho-planar mechanisms. In: ASME 2005 International Mechanical Engineering Congress and Exposition, pp. 389–399. American Society of Mechanical Engineers (2005)

    Google Scholar 

  7. Winder, B.G., Magleby, S.P., Howell, L.L.: Kinematic representations of pop-up paper mechanisms. J. Mech. Robot. 1(2), 021009 (2009)

    Article  Google Scholar 

  8. Song, J., Chen, Y., Lu, G.: Axial crushing of thin-walled structures with origami patterns. Thin-Walled Struct. 54, 65–71 (2012)

    Article  Google Scholar 

  9. Ma, J., You, Z.: Energy absorption of thin-walled square tubes with a prefolded origami pattern-part I: geometry and numerical simulation. J. Appl. Mech. 81(1), 011003 (2014)

    Article  Google Scholar 

  10. Zirbel, S.A., Lang, R.J., Thomson, M.W., Sigel, D.A., Walkemeyer, P.E., Trease, B.P., Magleby, S.P., Howell, L.L.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135(11), 111005 (2013)

    Article  Google Scholar 

  11. Chen, Y., Peng, R., You, Z.: Origami of thick panels. Science 349(6246), 396–400 (2015)

    Article  Google Scholar 

  12. Bassik, N., Stern, G.M., Gracias, D.H.: Microassembly based on hands free origami with bidirectional curvature. Appl. Phys. Lett. 95(9), 091901 (2009)

    Article  Google Scholar 

  13. McGough, K., Ahmed, S., Frecker, M., Ounaies, Z.: Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23(9), 094002 (2014)

    Article  Google Scholar 

  14. Lee, D.-Y., Kim, J.-S., Kim, S.-R., Koh, J.-S., Cho, K.-J.: The deformable wheel robot using magic-ball origami structure. In: Proceedings of the 2013 ASME Design Engineering Technical Conference, Portland, OR (2013)

    Google Scholar 

  15. Onal, C.D., Wood, R.J., Rus, D.: An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 18(2), 430–438 (2013)

    Article  Google Scholar 

  16. Vander Hoff, E., Jeong, D., Lee, K.: Origamibot-i: a thread-actuated origami robot for manipulation and locomotion. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 1421–1426. IEEE (2014)

    Google Scholar 

  17. Zhang, K., Qiu, C., Dai, J.S.: Helical Kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators. J. Mech. Robot. 7(2), 021014 (2015)

    Article  Google Scholar 

  18. Dai, J.S., Jones, J.R.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121(3), 375–382 (1999)

    Article  Google Scholar 

  19. Bowen, L.A., Grames, C.L., Magleby, S.P., Howell, L.L., Lang, R.J.: A classification of action origami as systems of spherical mechanisms. J. Mech. Des. 135(11), 111008 (2013)

    Article  Google Scholar 

  20. Hull, T.: On the mathematics of flat origamis. Congr. Numer. 215–224 (1994)

    Google Scholar 

  21. Liu, H., Dai, J.: Carton manipulation analysis using configuration transformation. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 216(5), 543–555 (2002)

    Article  Google Scholar 

  22. Mitani, J.: A design method for 3d origami based on rotational sweep. Comput. Aided Des. Appl. 6(1), 69–79 (2009)

    Article  MathSciNet  Google Scholar 

  23. Dai, J.S., Wang, D., Cui, L.: Orientation and workspace analysis of the multifingered metamorphic hand-metahand. IEEE Trans. Robot. 25(4), 942–947 (2009)

    Article  Google Scholar 

  24. Wilding, S.E., Howell, L.L., Magleby, S.P.: Spherical lamina emergent mechanisms. Mech. Mach. Theory 49, 187–197 (2012)

    Article  Google Scholar 

  25. Bowen, L., Frecker, M., Simpson, T.W., von Lockette, P.: A dynamic model of magneto-active elastomer actuation of the waterbomb base. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V05BT08A051–V05BT08A051. American Society of Mechanical Engineers (2014)

    Google Scholar 

  26. Yao, W., Dai, J.S.: Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space. J. Mech. Des. 130(2), 022303 (2008)

    Article  Google Scholar 

  27. Zhang, K., Fang, Y., Fang, H., Dai, J.S.: Geometry and constraint analysis of the three-spherical kinematic chain based parallel mechanism. J. Mech. Robot. 2(3), 031014 (2010)

    Article  Google Scholar 

  28. Wei, G., Dai, J.S.: Origami-inspired integrated planar-spherical overconstrained mechanisms. J. Mech. Des. 136(5), 051003 (2014)

    Article  Google Scholar 

  29. Beex, L., Peerlings, R.: An experimental and computational study of laminated paperboard creasing and folding. Int. J. Solids Struct. 46(24), 4192–4207 (2009)

    Article  MATH  Google Scholar 

  30. Felton, S.M., Tolley, M.T., Shin, B., Onal, C.D., Demaine, E.D., Rus, D., Wood, R.J.: Self-folding with shape memory composites. Soft Matter 9(32), 7688–7694 (2013)

    Article  Google Scholar 

  31. Ahmed, S., Lauff, C., Crivaro, A., McGough, K., Sheridan, R., Frecker, M., von Lockette, P., Ounaies, Z., Simpson, T., Lien, J., et al.: Multi-field responsive origami structures: preliminary modeling and experiments. ASME Paper No. DETC2013-12405 (2013)

    Google Scholar 

  32. Delimont, I.L., Magleby, S.P., Howell, L.L.: Evaluating compliant hinge geometries for origami-inspired mechanisms. J. Mech. Robot. 7(1), 011009 (2015)

    Article  Google Scholar 

  33. Dai, J.S., Cannella, F.: Stiffness characteristics of carton folds for packaging. J. Mech. Des. 130(2) (2008)

    Google Scholar 

  34. Qiu, C., Aminzadeh, V., Dai, J.S.: Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)

    Article  Google Scholar 

  35. Mentrasti, L., Cannella, F., Pupilli, M., Dai, J.S.: Large bending behavior of creased paperboard. I. Experimental investigations. Int. J. Solids Struct. 50(20), 3089–3096 (2013)

    Article  Google Scholar 

  36. Mentrasti, L., Cannella, F., Pupilli, M., Dai, J.S.: Large bending behavior of creased paperboard. II. Structural analysis. Int. J. Solids Struct. 50(20), 3097–3105 (2013)

    Article  Google Scholar 

  37. Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P., Howell, L.L.: Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23(9), 094009 (2014)

    Article  Google Scholar 

  38. Hanna, B.H., Magleby, S., Lang, R.J., Howell, L.L.: Force-deflection modeling for generalized origami waterbomb-base mechanisms. J. Appl. Mech. (2015)

    Google Scholar 

  39. Qiu, C., Vahid, A., Dai, J.S.: Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)

    Article  Google Scholar 

  40. Dai, J.S., Rees Jones, J.: Interrelationship between screw systems and corresponding reciprocal systems and applications. Mech. Mach. Theory 36(5), 633–651 (2001)

    Google Scholar 

  41. Zhang, K., Qiu, C., Dai, J.S.: An origami-parallel structure integrated deployable continuum robot. In: Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA, August 2–5, 2013. ASME, Boston (2015)

    Google Scholar 

  42. Zhang, K., Fang, Y.: Kinematics and workspace analysis of a novel spatial 3-DOF parallel manipulator. Prog. Nat. Sci. 18(4), 432–440 (2008)

    Google Scholar 

  43. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (1994)

    Google Scholar 

  44. Lipkin, H., Duffy, J.: The elliptic polarity of screws. ASME J. Mech. Trans. Autom. Des. 107, 377–387 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Qiu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, C., Dai, J.S. (2021). Large Deformation Analysis of Compliant Parallel Mechanisms. In: Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach. Springer Tracts in Advanced Robotics, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-48313-5_8

Download citation

Publish with us

Policies and ethics