Skip to main content

Introduction

  • Chapter
  • First Online:
  • 679 Accesses

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 139))

Abstract

As a new type of mechanical devices, compliant mechanisms [1] have been used in a variety of research and engineering disciplines, such as precision engineering, biomechanical engineering, etc. Unlike traditional mechanisms, a compliant mechanism utilizes the deformation of flexible elements and arranges them in a proper way to generate desired motions. As a consequence, compliant mechanisms demonstrate advantages such as the realization of precise motion, elimination of backlash and lubrication, as well as monolithic manufacturing. On the other hand, to successfully design a compliant mechanism remains challenging, which requires a good knowledge of both compliance behaviours of flexible elements as well as the integration of them. Evaluating the compliance performance of flexible members belongs to the solid-mechanics discipline, while the assembly of flexible elements is more related to traditional mechanism design. As such, they are introduced separately in the following sections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Howell, L.L.: Compliant Mechanisms. Wiley-Interscience (2001)

    Google Scholar 

  2. Shigley, J.E., Mischke, C.R., Budynas, R.G., Liu, X., Gao, Z.: Mechanical Engineering Design. vol. 89. McGraw-Hill, New York (1989)

    Google Scholar 

  3. Parise, J.J., Howell, L.L., Magleby, S.P.: Ortho-planar linear-motion springs. Mech. Mach. Theory 36(11), 1281–1299 (2001)

    Article  MATH  Google Scholar 

  4. Awtar, S., Slocum, A.H.: Constraint-based design of parallel kinematic XY flexure mechanisms. J. Mech. Des. 129(8), 816–830 (2007)

    Article  Google Scholar 

  5. Goldfarb, M., Speich, J.E.: A well-behaved revolute flexure joint for compliant mechanism design. J. Mech. Des. 121(3), 424–429 (1999)

    Article  Google Scholar 

  6. Smith, S.T.: Flexures: Elements of Elastic Mechanisms. CRC Press (2000)

    Google Scholar 

  7. Zhang, S., Fasse, E.D.: A finite-element-based method to determine the spatial stiffness properties of a notch hinge. J. Mech. Des. 123(1), 141–147 (2001)

    Article  Google Scholar 

  8. Wood, R., Avadhanula, S., Sahai, R., Steltz, E., Fearing, R.: Microrobot design using fiber reinforced composites. J. Mech. Des. 130(5), 052304 (2008)

    Google Scholar 

  9. Dai, J.S., Cannella, F.: Stiffness characteristics of carton folds for packaging. J. Mech. Des. 130(2) (2008)

    Google Scholar 

  10. McGough, K., Ahmed, S., Frecker, M., Ounaies, Z.: Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23(9), 094002 (2014)

    Article  Google Scholar 

  11. Blanding, D.L.: Exact constraint: machine design using kinematic processing. American Society of Mechanical Engineers (1999)

    Google Scholar 

  12. Timoshenko, S.P., Goodier, J.: Theory of elasticity. Int. J. Bulk Solids Storage Silos 1(4) (2014)

    Google Scholar 

  13. Su, H., Yue, C.: Type synthesis of freedom and constraint elements for design of flexure mechanisms. J. Mech. Sci 4(2), 263–277 (2013)

    Article  Google Scholar 

  14. Zhang, Y., Su, H.-J., Liao, Q.: Mobility criteria of compliant mechanisms based on decomposition of compliance matrices. Mech. Mach. Theory 79, 80–93 (2014)

    Article  Google Scholar 

  15. Hale, L.C.: Principles and techniques for designing precision machines. Technical report, Lawrence Livermore National Lab., CA, USA (1999)

    Google Scholar 

  16. Koseki, Y., Tanikawa, T., Koyachi, N., Arai, T.: Kinematic analysis of a translational 3-DOF micro-parallel mechanism using the matrix method. Adv. Robot. 16(3), 251–264 (2002)

    Article  Google Scholar 

  17. Pham, H.-H., Chen, I.-M.: Stiffness modeling of flexure parallel mechanism. Precis. Eng. 29(4), 467–478 (2005)

    Article  Google Scholar 

  18. Li, Y., Xu, Q.: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans. Robot. 25(3), 645–657 (2009)

    Article  Google Scholar 

  19. Su, H.-J., Tari, H.: Realizing orthogonal motions with wire flexures connected in parallel. J. Mech. Des. 132, 121002 (2010)

    Article  Google Scholar 

  20. Pilkey, W.D.: Formulas for Stress, Strain, and Structural Matrices. Wiley (1993)

    Google Scholar 

  21. Bisshopp, K., Drucker, D.: Large deflection of cantilever beams. Q. Appl. Math. 3(1) (1945)

    Google Scholar 

  22. Frisch-Fay, R.: Flexible Bars. Butterworths (1962)

    Google Scholar 

  23. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics, vol. 2. Butterworth-Heinemann (2000)

    Google Scholar 

  24. De Borst, R., Crisfield, M.A., Remmers, J.J., Verhoosel, C.V.: Nonlinear Finite Element Analysis of Solids and Structures. Wiley (2012)

    Google Scholar 

  25. Su, H.-J.: A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads. J. Mech. Robot. 1(2), 021008 (2009)

    Article  Google Scholar 

  26. Xu, P., Jingjun, Y., Guanghua, Z., Shusheng, B., Zhiwei, Y.: Analysis of rotational precision for an isosceles-trapezoidal flexural pivot. J. Mech. Des. 130(5), 052302 (2008)

    Article  Google Scholar 

  27. Xu, P., Jingjun, Y., Guanghua, Z., Shusheng, B.: The stiffness model of leaf-type isosceles-trapezoidal flexural pivots. J. Mech. Des. 130(8), 082303 (2008)

    Article  Google Scholar 

  28. Pham, H.-H., Yeh, H.-C., Chen, I.-M.: Micromanipulation system design based on selective actuation mechanisms. Int. J. Robot. Res. 25(2), 171–186 (2006)

    Article  Google Scholar 

  29. Lobontiu, N., Garcia, E.: Two-axis flexure hinges with axially-collocated and symmetric notches. Comput. Struct. 81(13), 1329–1341 (2003)

    Article  Google Scholar 

  30. Felton, S.M., Tolley, M.T., Shin, B., Onal, C.D., Demaine, E.D., Rus, D., Wood, R.J.: Self-folding with shape memory composites. Soft Matter 9(32), 7688–7694 (2013)

    Article  Google Scholar 

  31. Zhang, K., Qiu, C., Dai, J.S.: Helical Kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators. J. Mech. Robot. 7(2), 021014 (2015)

    Article  Google Scholar 

  32. Beex, L., Peerlings, R.: An experimental and computational study of laminated paperboard creasing and folding. Int. J. Solids Struct. 46(24), 4192–4207 (2009)

    Article  MATH  Google Scholar 

  33. Qiu, C., Aminzadeh, V., Dai, J.S.: Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)

    Article  Google Scholar 

  34. Hopkins, J.B.: Design of flexure-based motion stages for mechatronic systems via freedom, actuation and constraint topologies (FACT). Ph.D. thesis, Massachusetts Institute of Technology (2010)

    Google Scholar 

  35. Hopkins, J.B., Culpepper, M.L.: Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (fact)-part I: Principles. Precis. Eng. 34(2), 259–270 (2010)

    Article  Google Scholar 

  36. Hopkins, J.B., Culpepper, M.L.: A screw theory basis for quantitative and graphical design tools that define layout of actuators to minimize parasitic errors in parallel flexure systems. Precis. Eng. 34(4), 767–776 (2010)

    Article  Google Scholar 

  37. Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press (1900)

    Google Scholar 

  38. Dai, J.S., Rees Jones, J.: Interrelationship between screw systems and corresponding reciprocal systems and applications. Mech. Mach. Theory 36(5), 633–651 (2001)

    Google Scholar 

  39. Qiu, C., Yu, J., Li, S., Su, H.-J., Zeng, Y.: Synthesis of actuation spaces of multi-axis parallel flexure mechanisms based on screw theory. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 181–190. American Society of Mechanical Engineers (2011)

    Google Scholar 

  40. Yu, J.J., Li, S.Z., Qiu, C.: An analytical approach for synthesizing line actuation spaces of parallel flexure mechanisms. J. Mech. Des. 135(12), 124501–124501 (2013)

    Article  Google Scholar 

  41. Qiu, C., Zhang, K.T., Dai, J.S.: Constraint-based design and analysis of a compliant parallel mechanism using SMA-spring actuators. In: Proceedings of ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, Buffalo, USA, August 17–20, 2014. ASME, New York (2014)

    Google Scholar 

  42. Yi, B.-J., Chung, G.B., Na, H.Y., Kim, W.K., Suh, I.H.: Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges. IEEE Trans. Robot. Autom. 19(4), 604–612 (2003)

    Article  Google Scholar 

  43. Kang, B.H., Wen, J.T.-Y., Dagalakis, N., Gorman, J.J.: Analysis and design of parallel mechanisms with flexure joints. IEEE Trans. Robot. 21(6), 1179–1185 (2005)

    Article  Google Scholar 

  44. Li, Y., Xu, Q.: A novel design and analysis of a 2-DOF compliant parallel micromanipulator for nanomanipulation. IEEE Trans. Autom. Sci. Eng. 3(3), 247–254 (2006)

    Article  Google Scholar 

  45. Yao, Q., Dong, J., Ferreira, P.M.: Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage. Int. J. Mach. Tools Manuf. 47(6), 946–961 (2007)

    Article  Google Scholar 

  46. Li, Y., Xu, Q.: A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation. IEEE Trans. Autom. Sci. Eng. 8(2), 265–279 (2011)

    Article  Google Scholar 

  47. Tang, X., Chen, I., et al.: A large-displacement and decoupled XYZ flexure parallel mechanism for micromanipulation. In: 2006 IEEE International Conference on Automation Science and Engineering, CASE’06, pp. 75–80. IEEE (2006)

    Google Scholar 

  48. Carroll, D.W., Magleby, S.P., Howell, L.L., Todd, R.H., Lusk, C.P.: Simplified manufacturing through a metamorphic process for compliant ortho-planar mechanisms. In: ASME 2005 International Mechanical Engineering Congress and Exposition, pp. 389–399. American Society of Mechanical Engineers (2005)

    Google Scholar 

  49. Winder, B.G., Magleby, S.P., Howell, L.L.: Kinematic representations of pop-up paper mechanisms. J. Mech. Robot. 1(2), 021009 (2009)

    Article  Google Scholar 

  50. Lee, D.-Y., Kim, J.-S., Kim, S.-R., Koh, J.-S., Cho, K.-J.: The deformable wheel robot using magic-ball origami structure. In: Proceedings of the 2013 ASME Design Engineering Technical Conference, Portland, OR (2013)

    Google Scholar 

  51. Vander Hoff, E., Jeong, D., Lee, K.: Origamibot-I: a thread-actuated origami robot for manipulation and locomotion. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 1421–1426. IEEE (2014)

    Google Scholar 

  52. Dai, J.S., Jones, J.R.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121(3), 375–382 (1999)

    Article  Google Scholar 

  53. Dai, J.S., Wang, D., Cui, L.: Orientation and workspace analysis of the multifingered metamorphic hand–metahand. IEEE Trans. Robot. 25(4), 942–947 (2009)

    Article  Google Scholar 

  54. Wilding, S.E., Howell, L.L., Magleby, S.P.: Spherical lamina emergent mechanisms. Mech. Mach. Theory 49, 187–197 (2012)

    Article  Google Scholar 

  55. Bowen, L., Frecker, M., Simpson, T.W., von Lockette, P.: A dynamic model of magneto-active elastomer actuation of the waterbomb base. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. V05BT08A051–V05BT08A051. American Society of Mechanical Engineers (2014)

    Google Scholar 

  56. Yao, W., Dai, J.S.: Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space. J. Mech. Des. 130(2), 022303 (2008)

    Article  Google Scholar 

  57. Zhang, K., Fang, Y., Fang, H., Dai, J.S.: Geometry and constraint analysis of the three-spherical kinematic chain based parallel mechanism. J. Mech. Robot. 2(3), 031014 (2010)

    Article  Google Scholar 

  58. Wei, G., Dai, J.S.: Origami-inspired integrated planar-spherical overconstrained mechanisms. J. Mech. Des. 136(5), 051003 (2014)

    Article  Google Scholar 

  59. Ahmed, S., Lauff, C., Crivaro, A., McGough, K., Sheridan, R., Frecker, M., von Lockette, P., Ounaies, Z., Simpson, T., Lien, J., et al.: Multi-field responsive origami structures: preliminary modeling and experiments. ASME Paper No. DETC2013-12405 (2013)

    Google Scholar 

  60. Delimont, I.L., Magleby, S.P., Howell, L.L.: Evaluating compliant hinge geometries for origami-inspired mechanisms. J. Mech. Robot. 7(1), 011009 (2015)

    Article  Google Scholar 

  61. Mentrasti, L., Cannella, F., Pupilli, M., Dai, J.S.: Large bending behavior of creased paperboard. I. Experimental investigations. Int. J. Solids Struct. 50(20), 3089–3096 (2013)

    Article  Google Scholar 

  62. Mentrasti, L., Cannella, F., Pupilli, M., Dai, J.S.: Large bending behavior of creased paperboard. II. Structural analysis. Int. J. Solids Struct. 50(20), 3097–3105 (2013)

    Article  Google Scholar 

  63. Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P., Howell, L.L.: Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23(9), 094009 (2014)

    Article  Google Scholar 

  64. Hanna, B.H., Magleby, S., Lang, R.J., Howell, L.L.: Force-deflection modeling for generalized origami waterbomb-base mechanisms. J. Appl. Mech. (2015)

    Google Scholar 

  65. Qiu, C., Zhang, K., Dai, J.S.: Repelling-screw based force analysis of origami mechanisms. J. Mech. Robot. 15(1122), 1 (2015)

    Google Scholar 

  66. Zhang, K., Qiu, C., Dai, J.S.: An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. (2015)

    Google Scholar 

  67. Dimentberg, F.M.: The screw calculus and its applications in mechanics. Technical report, DTIC Document (1968)

    Google Scholar 

  68. Loncaric, J.: Normal forms of stiffness and compliance matrices. IEEE J. Robot. Autom. 3(6), 567–572 (1987)

    Article  Google Scholar 

  69. Lipkin, H., Patterson, T.: Geometrical properties of modelled robot elasticity: Part I-decomposition. In: 1992 ASME Design Technical Conference, Scottsdale, DE, vol. 45, pp. 179–185 (1992)

    Google Scholar 

  70. Lipkin, H., Patterson, T.: Geometrical properties of modelled robot elasticity: Part II–center of elasticity. In: 22nd Biennal Mechanisms Conference Robotics, Spatial Mechanisms, and Mechanical Systems: ASME Design Technical Conferences, pp. 13–16. Scottsdale, AZ (1992)

    Google Scholar 

  71. Patterson, T., Lipkin, H.: Structure of robot compliance. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 115, 576–576 (1993)

    Google Scholar 

  72. Patterson, T., Lipkin, H.: A classification of robot compliance. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 115, 581–581 (1993)

    Google Scholar 

  73. Ciblak, N., Lipkin, H.: Synthesis of cartesian stiffness for robotic applications. In: 1999 Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2147–2152. IEEE (1999)

    Google Scholar 

  74. Huang, S., Schimmels, J.M.: The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel. IEEE Trans. Robot. Autom. 14(3), 466–475 (1998)

    Article  Google Scholar 

  75. Huang, S., Schimmels, J.M.: The eigenscrew decomposition of spatial stiffness matrices. IEEE Trans. Robot. Autom. 16(2), 146–156 (2000)

    Article  Google Scholar 

  76. Waldron, K., Wang, S.-L., Bolin, S.: A study of the Jacobian matrix of serial manipulators. J. Mech. Des. 107(2), 230–237 (1985)

    Google Scholar 

  77. Joshi, S.A., Tsai, L.-W.: Jacobian analysis of limited-DOF parallel manipulators. In: ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 341–348. American Society of Mechanical Engineers (2002)

    Google Scholar 

  78. Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley (1999)

    Google Scholar 

  79. Huang, T., Zhao, X., Whitehouse, D.J.: Stiffness estimation of a tripod-based parallel kinematic machine. IEEE Trans. Robot. Autom. 18(1), 50–58 (2002)

    Article  Google Scholar 

  80. Li, Y., Xu, Q.: Stiffness analysis for a 3-PUU parallel kinematic machine. Mech. Mach. Theory 43(2), 186–200 (2008)

    Article  MATH  Google Scholar 

  81. Xu, Q., Li, Y.: An investigation on mobility and stiffness of a 3-DOF translational parallel manipulator via screw theory. Robot. Comput. Integr. Manuf. 24(3), 402–414 (2008)

    Article  Google Scholar 

  82. Kim, H.S., Lipkin, H.: Stiffness of parallel manipulators with serially connected legs. J. Mech. Robot. 6(3), 031001 (2014)

    Article  Google Scholar 

  83. Selig, J., Ding, X.: A screw theory of static beams. In: 2001 Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 312–317. IEEE (2001)

    Google Scholar 

  84. Ding, X., Selig, J.M.: On the compliance of coiled springs. Int. J. Mech. Sci. 46(5), 703–727 (2004)

    Article  MATH  Google Scholar 

  85. Ciblak, N., Lipkin, H.: Design and analysis of remote center of compliance structures. J. Robot. Syst. 20(8), 415–427 (2003)

    Article  MATH  Google Scholar 

  86. Dai, J.S., Xilun, D.: Compliance analysis of a three-legged rigidly-connected platform device. J. Mech. Des. 128(4), 755–764 (2006)

    Article  Google Scholar 

  87. Yu, J.J., Li, S.Z., Qiu, C.: An analytical approach for synthesizing line actuation spaces of parallel flexure mechanisms. J. Mech. Des. 135(12), 124501 (2013)

    Article  Google Scholar 

  88. Qiu, C., Dai, J.S.: Constraint stiffness construction and decomposition of a SPS orthogonal parallel mechanism. In: Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Massachusetts, Boston, USA, August 2–5, 2015. ASME (2015)

    Google Scholar 

  89. Qiu, C., Qi, P., Liu, H., Althoefer, K., Dai, J.S.: Six-dimensional compliance analysis and validation of ortho-planar springs. J. Mech. Des. (2016)

    Google Scholar 

  90. Qiu, C., Vahid, A., Dai, J.S.: Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Qiu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, C., Dai, J.S. (2021). Introduction. In: Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach. Springer Tracts in Advanced Robotics, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-48313-5_1

Download citation

Publish with us

Policies and ethics