Skip to main content

Fundamentals of Reactor Design and Scale-Up

  • Chapter
  • First Online:
Diameter-Transformed Fluidized Bed

Part of the book series: Particle Technology Series ((POTS,volume 27))

  • 402 Accesses

Abstract

Diameter-transformed fluidized beds (DTFBs) possess unique advantages in terms of their ability to control complex catalytic reactions. The design and scale-up of DTFBs are challenging due to the intrinsic multiscale nature of gas-solid fluidization. In this chapter, we first review the fundamental understanding of gas–solid flow regimes, which is relevant to both transport and reaction characteristics. Then, design and scale-up methods including analytical, experimental, and numerical approaches are introduced. Finally, we summarize the process of applying multiscale computation fluid dynamics simulations to the development of DTFBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., Chen, Y.: Mesoscale modeling: beyond local equilibrium assumption for multiphase flow. In: Advances in Chemical Engineering, pp. 193–277. Elsevier, San Diego (2015)

    Google Scholar 

  2. Grace, J.: Hydrodynamics of fluidization. In: Michaelides, E., Crowe, C., Schwarzkopf, J. (eds.) Multiphase Flow Handbook, pp. 955–994. CRC Press, Boca Raton (2016)

    Google Scholar 

  3. Glicksman, L.R.: Scaling relationships for fluidized-beds. Chem. Eng. Sci. 39(9), 1373–1379 (1984)

    Article  CAS  Google Scholar 

  4. Rudisuli, M., Schildhauer, T.J., Biollaz, S.M.A., van Ommen, J.R.: Scale-up of bubbling fluidized bed reactors – a review. Powder Technol. 217, 21–38 (2012)

    Article  CAS  Google Scholar 

  5. Syamlal, M., Guenther, C., Cugini, A., Ge, W., Wang, W., Yang, N., Li, J.H.: Computational science: enabling technology development. Chem. Eng. Prog. 107(1), 23–29 (2011)

    CAS  Google Scholar 

  6. Igci, Y., Andrews, A.T., Sundaresan, S., Pannala, S., O’Brien, T.: Filtered two-fluid models for fluidized gas-particle suspensions. AICHE J. 54(6), 1431–1448 (2008)

    Article  CAS  Google Scholar 

  7. Li, J., Kwauk, M.: Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-scale Method. Metallurgical Industry Press, Beijing (1994)

    Google Scholar 

  8. Grace, J.R.: Contacting modes and behavior classification of gas -solid and other two-phase suspensions. Can. J. Chem. Eng. 64(3), 353–363 (1986)

    Article  CAS  Google Scholar 

  9. Geldart, D.: Types of gas fluidization. Powder Technol. 7(5), 285–292 (1973)

    Article  CAS  Google Scholar 

  10. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89–94 (1952)

    CAS  Google Scholar 

  11. Wen, C., Yu, Y.: Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62(62), 100–111 (1966)

    CAS  Google Scholar 

  12. Richardson, J., Zaki, W.: Sedimentation and fluidisation: part 1. Trans Inst. Chem. Eng. 32, 35–53 (1954)

    CAS  Google Scholar 

  13. Darton, R.C., Lanauze, R.D., Davidson, J.F., Harrison, D.: Bubble-growth due to coalescence in fluidized-beds. Trans. Inst. Chem. Eng. 55(4), 274–280 (1977)

    CAS  Google Scholar 

  14. Horio, M., Nonaka, A.: A generalized bubble diameter correlation for gas-solid fluidized-beds. AICHE J. 33(11), 1865–1872 (1987)

    Article  CAS  Google Scholar 

  15. Yerushalmi, J., Cankurt, N.T.: Further-studies of the regimes of fluidization. Powder Technol. 24(2), 187–205 (1979)

    Article  CAS  Google Scholar 

  16. Bi, H.T., Grace, J.R., Zhu, J.X.: Types of choking in vertical pneumatic systems. Int. J. Multiphase Flow. 19(6), 1077–1092 (1993)

    Article  CAS  Google Scholar 

  17. Bi, H.T., Grace, J.R.: Flow regime diagrams for gas-solid fluidization and upward transport. Int. J. Multiphase Flow. 21(6), 1229–1236 (1995)

    Article  CAS  Google Scholar 

  18. Bai, D., Jin, Y., Yu, Z.: Flow regimes in circulating fluidized beds. Chem. Eng. Technol. 16(5), 307–313 (1993)

    Article  CAS  Google Scholar 

  19. Bi, H.T., Grace, J.R., Lim, K.S.: Transition from bubbling to turbulent fluidization. Ind. Eng. Chem. Res. 34(11), 4003–4008 (1995)

    Article  CAS  Google Scholar 

  20. Sun, Z.N., Zhu, J.: A consolidated flow regime map of upward gas fluidization. AICHE J. 65(9), e16672 (2019)

    Article  CAS  Google Scholar 

  21. Zhu, H.Y., Zhu, J.: Comparative study of flow structures in a circulating-turbulent fluidized bed. Chem. Eng. Sci. 63(11), 2920–2927 (2008)

    Article  CAS  Google Scholar 

  22. Davidson, J.F., Harrison, D.: Fluidised Particles. Cambridge University Press, London (1963)

    Google Scholar 

  23. Reh, L.: Fluid dynamics of CFB combustor. In: Circulating Fluidized Bed Technology V. Science Press, Beijing (1997)

    Google Scholar 

  24. Knowlton, T.M., Karri, S.B.R., Issangya, A.: Scale-up of fluidized-bed hydrodynamics. Powder Technol. 150(2), 72–77 (2005)

    Article  CAS  Google Scholar 

  25. Frye, C.G., Lake, W.C., Eckstrom, H.C.: Gas-solid contacting with ozone decomposition reaction. AICHE J. 4(4), 403–408 (1958)

    Article  CAS  Google Scholar 

  26. Horio, M., Nonaka, A., Sawa, Y., Muchi, I.: A new similarity rule for fluidized-bed scale-up. AICHE J. 32(9), 1466–1482 (1986)

    Article  CAS  Google Scholar 

  27. Bashiri, H., Mostoufi, N., Sotudeh-Gharebagh, R., Chaouki, J.: Effect of bed diameter on the hydrodynamics of gas-solid fluidized beds. Iran. J. Chem. Chem. Eng. 29(3), 27–36 (2010)

    CAS  Google Scholar 

  28. Verma, V., Padding, J.T., Deen, N.G., Kuipers, J.A.M.: Effect of bed size on hydrodynamics in 3-D gas-solid fluidized beds. AICHE J. 61(5), 1492–1506 (2015)

    Article  CAS  Google Scholar 

  29. Efhaima, A., Al-Dahhan, M.H.: Bed diameter effect on the hydrodynamics of gas-solid fluidized beds via radioactive particle tracking (RPT) technique. Can. J. Chem. Eng. 95(4), 744–756 (2017)

    Article  CAS  Google Scholar 

  30. Yerushalmi, Y., Avidan, A.: High velocity fluidization. In: Davidson, J.F., Clift, R., Harrison, D. (eds.) Fluidization. Academic, New York (1985)

    Google Scholar 

  31. Zhang, W.N., Johnsson, F., Leckner, B.: Fluid-dynamic boundary-layers in Cfb boilers. Chem. Eng. Sci. 50(2), 201–210 (1995)

    Article  CAS  Google Scholar 

  32. Xu, G.W., Nomura, K., Nakagawa, N., Kato, K.: Hydrodynamic dependence on riser diameter for different particles in circulating fluidized beds. Powder Technol. 113(1–2), 80–87 (2000)

    Article  CAS  Google Scholar 

  33. Chen, S., Fan, Y.P., Yan, Z.H., Wang, W., Lu, C.X.: CFD simulation of gas-solid two-phase flow and mixing in a FCC riser with feedstock injection. Powder Technol. 287, 29–42 (2016)

    Article  CAS  Google Scholar 

  34. Mathur, K.B., Epstein, N.: Spouted Beds. Academic, New York (1974)

    Google Scholar 

  35. Venkatesh, R.D., Chaouki, J., Klvana, D.: Fluidization of cryogels in a conical column. Powder Technol. 89(3), 179–186 (1996)

    Article  Google Scholar 

  36. Wormsbecker, M., van Ommen, R., Nijenhuis, J., Tanfara, H., Pugsley, T.: The influence of vessel geometry on fluidized bed dryer hydrodynamics. Powder Technol. 194(1–2), 115–125 (2009)

    Article  CAS  Google Scholar 

  37. Zenz, F.A.: Two-phase fluid-solid flow. Ind. Eng. Chem. 41(12), 2801–2806 (1949)

    Article  CAS  Google Scholar 

  38. Lu, B., Wang, W., Li, J.H., Wang, X.H., Gao, S.Q., Lu, W.M., Xu, Y.H., Long, J.: Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chem. Eng. Sci. 62(18–20), 5487–5494 (2007)

    Article  CAS  Google Scholar 

  39. Yang, W.C.: “Choking” revisited. Ind. Eng. Chem. Res. 43(18), 5496–5506 (2004)

    Article  CAS  Google Scholar 

  40. Toomey, R.D., Johnstone, H.F.: Gaseous fluidization of solid particles. Chem. Eng. Prog. 48(5), 220–226 (1952)

    CAS  Google Scholar 

  41. Kunii, D., Levenspiel, O.: Fluidization Engineering. Wiley, New York (1969)

    Google Scholar 

  42. Edwards, M., Avidan, A.: Conversion model aids scale-up of mobil fluid-bed MTG process. Chem. Eng. Sci. 41(4), 829–835 (1986)

    Article  CAS  Google Scholar 

  43. Abba, I.A., Grace, J.R., Bi, H.T., Thompson, M.L.: Spanning the flow regimes: generic fluidized-bed reactor model. AICHE J. 49(7), 1838–1848 (2003)

    Article  CAS  Google Scholar 

  44. Kunii, D., Levenspiel, O.: Circulating fluidized-bed reactors. Chem. Eng. Sci. 52(15), 2471–2482 (1997)

    Article  CAS  Google Scholar 

  45. Jiang, P., Wei, F., Fan, L.-S.: General approaches to reactor design. In: Yang, W.-C. (ed.) Handbook of Fluidization and Fluid-Particle Systems. Taylor & Francis Group LLC, New York (2003)

    Google Scholar 

  46. Kelkar, V.V., Ng, K.M.: Development of fluidized catalytic reactors: screening and scale-up. AICHE J. 48(7), 1498–1518 (2002)

    Article  CAS  Google Scholar 

  47. Anderson, T.B., Jackson, R.: A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 6(4), 527–539 (1967)

    Article  CAS  Google Scholar 

  48. Grace, J.R., Taghipour, F.: Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technol. 139(2), 99–110 (2004)

    Article  CAS  Google Scholar 

  49. Gallucci, K., Jand, N., Foscolo, P.U., Santini, M.: Cold model characterisation of a fluidised bed catalytic reactor by means of instantaneous pressure measurements. Chem. Eng. J. 87(1), 61–71 (2002)

    Article  CAS  Google Scholar 

  50. van der Hoef, M.A., Annaland, M.V., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 47–70 (2008)

    Article  Google Scholar 

  51. Ding, J., Gidaspow, D.: A bubbling fluidization model using kinetic-theory of granular flow. AICHE J. 36(4), 523–538 (1990)

    Article  CAS  Google Scholar 

  52. Yang, N., Wang, W., Ge, W., Li, J.: Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow. China Part. 1(1), 38–41 (2003)

    Article  Google Scholar 

  53. Dong, W.G., Wang, W., Li, J.H.: A multiscale mass transfer model for gas-solid riser flows: part 1 – sub-grid model and simple tests. Chem. Eng. Sci. 63(10), 2798–2810 (2008)

    Article  CAS  Google Scholar 

  54. Breault, R.W.: A review of gas-solid dispersion and mass transfer coefficient correlations in circulating fluidized beds. Powder Technol. 163(1–2), 9–17 (2006)

    Article  CAS  Google Scholar 

  55. Sundaresan, S.: Instabilities in fluidized beds. Annu. Rev. Fluid Mech. 35, 63–88 (2003)

    Article  Google Scholar 

  56. Wang, W., Li, J.: Simulation of gas-solid two-phase flow by a multi-scale CFD approach – extension of the EMMS model to the sub-grid level. Chem. Eng. Sci. 62(1–2), 208–231 (2007)

    Article  CAS  Google Scholar 

  57. Wang, W., Ge, W., Yang, N., Li, J.: Meso-scale modeling—the key to multi-scale CFD simulation. In: Marin, G.B. (ed.) Advances in Chemical Engineering, vol. 40, pp. 1–58. Academic (2011)

    Google Scholar 

  58. Lu, B., Wang, W., Li, J.: Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows. Chem. Eng. Sci. 64(15), 3437–3447 (2009)

    Article  CAS  Google Scholar 

  59. Wang, W., Lu, B.N., Zhang, N., Shi, Z.S., Li, J.H.: A review of multiscale CFD for gas-solid CFB modeling. Int. J. Multiphase Flow. 36(2), 109–118 (2010)

    Article  CAS  Google Scholar 

  60. Wang, W., Lu, B., Li, J.H.: Choking and flow regime transitions: simulation by a multi-scale CFD approach. Chem. Eng. Sci. 62(3), 814–819 (2007)

    Article  CAS  Google Scholar 

  61. Chen, S., Fan, Y.P., Yan, Z.H., Wang, W., Liu, X.H., Lu, C.X.: CFD optimization of feedstock injection angle in a FCC riser. Chem. Eng. Sci. 153, 58–74 (2016)

    Article  CAS  Google Scholar 

  62. Lu, B.N., Zhang, J.Y., Luo, H., Wang, W., Li, H., Ye, M., Liu, Z.M., Li, J.H.: Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors. Chem. Eng. Sci. 171, 244–255 (2017)

    Article  CAS  Google Scholar 

  63. Zhang, J.Y., Lu, B.N., Chen, F.G., Li, H., Ye, M., Wang, W.: Simulation of a large methanol-to-olefins fluidized bed reactor with consideration of coke distribution. Chem. Eng. Sci. 189, 212–220 (2018)

    Article  CAS  Google Scholar 

  64. Lu, B.N., Zhang, N., Wang, W., Li, J.H., Chiu, J.H., Kang, S.G.: 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler. AICHE J. 59(4), 1108–1117 (2013)

    Article  CAS  Google Scholar 

  65. Zhang, N., Lu, B.N., Wang, W., Li, J.H.: 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chem. Eng. J. 162(2), 821–828 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Tian .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, Y., Wang, W. (2020). Fundamentals of Reactor Design and Scale-Up. In: Diameter-Transformed Fluidized Bed. Particle Technology Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-47583-3_2

Download citation

Publish with us

Policies and ethics