Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 133))

  • 1106 Accesses

Abstract

The article addresses the problem of knowledge representation in digital systems in terms of cognitive science. The authors consider formalized semantic metalanguage as a tool to Simulate the semantic structure of sentences and thoughts. The created on the basis of frame-scenario model SESAME metalanguage is described and discussed, that allows to represent the meaning structure of standard events and situation in an artificial formalized language and combine linguistic and extralinguistic information. SESAME is a “matrix of meanings” for making natural language concepts suitable for “semantic calculations” using computer technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bocharov V, Voishvillo E, Dragalin A, Smirnov V (1980) On problems of the evolution of logic. Soviet Stud Philos 18(4):31–52. https://doi.org/10.2753/RSP1061-1967180431

    Article  Google Scholar 

  2. Curry H (1980) Some philosophical aspects of combinatory logic. Stud Logic Found Math 101:85–101. https://doi.org/10.1016/S0049-237X(08)71254-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Digital economics of the Russian Federation – National program. http://government.ru/rugovclassifier/614/events/. Accessed 10 Feb 2020

  4. Dobrova V, Kistanova O (2017) Meta-languages: nature and characteristic features. Voprosy Kognitivnoy Lingvistiki 1(50):114–117. https://doi.org/10.20916/1812-3228-2017-1-114-117

    Article  Google Scholar 

  5. Faber P, Cabezas-García M (2019) Specialized knowledge representation: from terms to frames. Res Lang 17:197–211. https://doi.org/10.2478/rela-2019-0012

    Article  Google Scholar 

  6. Goddard C, Wierzbicka A (2013) Words and meanings. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780199668434.003.0001

    Book  Google Scholar 

  7. Gvishiani N (2017) The metaconcept word-combination and its transformation in English computer-corpus discourse. Voprosy Kognitivnoy Lingvistiki 2:15–25. https://doi.org/10.20916/1812-3228-2017-2-15-25

    Article  Google Scholar 

  8. Jakobson R (1965) Quest for the essence of language. Diogenes 13(51):21–37. https://doi.org/10.1177/039219216501305103

    Article  Google Scholar 

  9. Jakus G, Milutinović V, Omerović S, Tomažič S (2013) Concepts, ontologies, and knowledge representation. Springer, New York. https://doi.org/10.1007/978-1-4614-7822-5_4

    Book  MATH  Google Scholar 

  10. Krongauz M (1994) Word formation and linguistics. Russ Linguist 18:379–387. https://doi.org/10.1007/BF01650153

    Article  Google Scholar 

  11. Laurini R (2017) Geographic knowledge infrastructure. ISTE Press, Elsevier, London. https://doi.org/10.1016/b978-1-78548-243-4.50002-5

    Book  Google Scholar 

  12. Lebedev M (2007) Prospects of modern concepts of reliability of knowledge. Voprosy Filosofii 11:119–132

    Google Scholar 

  13. Melchuk I (2015) Dependency in language. In: Wright JD (ed) International encyclopedia of the social & behavioral sciences. Elsevier, London, pp 182–195. https://doi.org/10.1016/b978-0-08-097086-8.53005-0

    Chapter  Google Scholar 

  14. Melchuk I, Polguère A (2002) A formal lexicon in the meaning – Text theory (or how to do lexica with words). Comput Linguist 13(3–4):261–275

    Google Scholar 

  15. Minsky M (1975) A framework for representing knowledge. In: Winston PH (ed) The psychology of computer vision. McGraw-Hill Book, New York, pp 211–281

    Google Scholar 

  16. Musen M (2014) Knowledge representation. In: Sarkar IN (ed) Methods in biomedical informatics. Academic Press, Cambridge, pp 49–79. https://doi.org/10.1016/b978-0-12-401678-1.00003-8

    Chapter  Google Scholar 

  17. Nazaruks V, Osis J (2017) A survey on domain knowledge representation with frames. In: Damiani E, Spanoudakis G, Maciaszek L (eds) Proceedings of the 12th international conference on evaluation of novel approaches to software engineering, MDI4SE, vol 1. SciTePress, Porto, pp 346–354. https://doi.org/10.5220/0006388303460354

    Chapter  Google Scholar 

  18. Solovyev V, Ivanov V (2015) Knowledge-driven event extraction in Russian: corpus-based linguistic resources. Comput Intell Neurosci 2016:4183760. https://doi.org/10.1155/2016/4183760

    Article  Google Scholar 

  19. The Strategy of scientific and technological development of the Russian Federation until 2035. http://kremlin.ru/acts/bank/41449. Accessed 10 Feb 2020

  20. Wierzbicka A (2009) Language and metalanguage: key issues in emotion research. Emot Rev 1:3–14. https://doi.org/10.1177/1754073908097175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dobrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobrova, V., Ageenko, N., Menshenina, S. (2021). Semantic Metalanguage for Digital Knowledge Representation. In: Ashmarina, S.I., Mantulenko, V.V. (eds) Current Achievements, Challenges and Digital Chances of Knowledge Based Economy. Lecture Notes in Networks and Systems, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-030-47458-4_12

Download citation

Publish with us

Policies and ethics