Skip to main content

Thin Film Lubrication, Lubricants and Additives

  • Chapter
  • First Online:
Tribology in Materials and Applications

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Friction will be generated when two solid bodies are pressed over or slide against each other, and it acts opposite to the direction of relative motion. Lubricants are frequently used to reduce friction which otherwise may result in high machine wear and energy losses. Depending upon the phenomenon, lubrication can be classified into four different regimes: boundary, mixed, elastohydrodynamic and hydrodynamic. In boundary regime, the frictional response is mainly governed by the properties of the surfaces and it generally involves adsorption of lubricant molecules onto the mating surfaces. Therefore, in this regime, properties other than bulk properties of the lubricants play a significant role in determining the frictional response. Mixed or thin film lubrication (TFL) is a bridge that mark the transition from boundary to Elasto-Hydrodynamic (EHL) [or hydrodynamic (HL)] regimes. In TFL the load is partly supported by direct contact of the surface asperities and partly by the fluid. EHL regime is a type of HL regime which is characterized by the formation of sufficiently thick fluid film which fully separates the surfaces from direct contact thus reducing friction. Elastic deflections of the surfaces in contact in EHL regime influence the shape and thickness of the lubricant film significantly. HL differs from EHL due to negligible elastic deformation of the surfaces at the contact interface. In EHL/HL, load is fully supported by the lubricant where the bulk property of the lubricant and entrainment velocity of the tribo pairs determines the film thickness and friction. Transition between different lubrication regimes is well described by Stribeck curve. In this chapter, the mechanism of transition between different regimes and factors influencing the frictional response, different types of lubricants and additives types and their key features will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Reynolds, IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 177, 157–234 (1886)

    Google Scholar 

  2. H.M. Martin, Lubrication of gear teeth. Engineering (London) 102, 119–121 (1916)

    Google Scholar 

  3. A.N. Grubin, Investigation of the Contact of Machine Components (Central Scientific Research Institute for Technology and Mechanical Engineering, Moscow, 1949)

    Google Scholar 

  4. A.f.I. Petrusevich, Principal Conclusions from Contact-Hydrodynamic Theory of Lubrication (Associated Technical Services, East Orange, NJ, 1950)

    Google Scholar 

  5. A. Cameron, C. Mc Ettles, Basic Lubrication Theory (E. Horwood, Chichester, 1976)

    Google Scholar 

  6. D. Dowson, G. Higginson, A numerical solution to the elasto-hydrodynamic problem. J. Mech. Eng. Sci. 1(1), 6–15 (1959)

    Article  Google Scholar 

  7. R. Gohar, Elastohydrodynamics (World Scientific, Singapore, 2001)

    Book  Google Scholar 

  8. A.A. Lubrecht, The numerical solution of elastohydrodynamic lubricated line and point contact problems using multigrid techniques, Ph.D. Thesis, University of Twente, The Netherlands (1987)

    Google Scholar 

  9. C.H. Venner, A.A. Lubrecht, Multi-level Methods in Lubrication, vol. 37 (Elsevier, Burlington, 2000)

    Google Scholar 

  10. B. Briscoe, D. Evans, D. Tabor, The influence of contact pressure and saponification on the sliding behavior of stearic acid monolayers. J. Colloid Interface Sci. 61(1), 9–13 (1977)

    Article  CAS  Google Scholar 

  11. Y.H. Wijnant, Contact Dynamics in the Field of Elastohydrodynamic Lubrication (Department of Mechanical Engineering, University of Twente, 1998)

    Google Scholar 

  12. N. Ren et al., Plasto-elastohydrodynamic lubrication (PEHL) in point contacts. J. Tribol. 132(3), 031501 (2010)

    Article  Google Scholar 

  13. D. Zhu, Y.-Z. Hu, Effects of rough surface topography and orientation on the characteristics of EHD and mixed lubrication in both circular and elliptical contacts. Tribol. Trans. 44(3), 391–398 (2001)

    Article  CAS  Google Scholar 

  14. H. Khan, P. Sinha, A. Saxena, A simple algorithm for thermo-elasto-hydrodynamic lubrication problems. Int. J. Res. Rev. Appl. Sci. 1(3), 265–279 (2009)

    CAS  Google Scholar 

  15. Y.-Z. Hu et al., A computer model of mixed lubrication in point contacts. Tribol. Int. 34(1), 65–73 (2001)

    Article  Google Scholar 

  16. D. Zhu et al., Simulation of sliding wear in mixed lubrication. J. Tribol. 129(3), 544–552 (2007)

    Article  Google Scholar 

  17. M. Hartinger et al., CFD modelling of elastohydrodynamic lubrication, in World Tribology Congress III (American Society of Mechanical Engineers, 2005)

    Google Scholar 

  18. H. Spikes, Sixty years of EHL. Lubr. Sci. 18(4), 265–291 (2006)

    Article  CAS  Google Scholar 

  19. R. Bosman, Mild wear modeling in the boundary lubrication regime (2011)

    Google Scholar 

  20. J. Zhang, Y. Meng, Boundary lubrication by adsorption film. Friction 3(2), 115–147 (2015)

    Article  Google Scholar 

  21. A. Akchurin, R. Bosman, A deterministic stress-activated model for tribo-film growth and wear simulation. Tribol. Lett. 65(2), 59 (2017)

    Article  CAS  Google Scholar 

  22. P. Ku, Interdisciplinary approach to the lubrication of concentrated contacts. NASA SP-237. NASA Special Publication, 237, 1970

    Google Scholar 

  23. H. Spikes, A. Olver, Basics of mixed lubrication. Lubr. Sci. 16(1), 1–28 (2003)

    Article  Google Scholar 

  24. W. Shizhu, P. Huang, Principle of Tribology (Wiley, United States, 2012)

    Google Scholar 

  25. L. Ma, J. Luo, Thin film lubrication in the past 20 years. Friction 4(4), 280–302 (2016)

    Article  Google Scholar 

  26. K. Holmberg, A. Erdemir, Global impact of friction on energy consumption, economy and environment. FME Trans. 43(3), 181–185 (2015)

    Google Scholar 

  27. P.L. Menezes, C.J. Reeves, M.R. Lovell, Fundamentals of lubrication, in Tribology for scientists and engineers (Springer, Cham, 2013), pp. 295–340

    Chapter  Google Scholar 

  28. T. Mang, A. Gosalia, Lubricants and their market. Lubricants and Lubrication (Wiley, Weinheim, 2017), pp. 1–10

    Google Scholar 

  29. C.E. Campañá, M.H. Müser, Theoretical studies of superlubricity, Superlubricity (Elsevier, New York, 2007), pp. 39–56

    Chapter  Google Scholar 

  30. B. Bhushan, Solid lubricants and self-lubricating films, in Modern Tribology Handbook, Two Volume Set (CRC Press, Boca Raton, 2000), pp. 817–856

    Google Scholar 

  31. A. Erdemir, Lubrication from Mixture of Boric Acid with Oils and Greases (Argonne National Laboratory (ANL), Argonne, IL, 1995)

    Google Scholar 

  32. M. Kanakia, M. Peterson, Literature Review of Solid Lubrication Mechanisms (Southwest Research Inst San Antonio TX Belvoir Fuels and Lubricants Research, 1987)

    Google Scholar 

  33. R.H. Savage, Graphite lubrication. J. Appl. Phys. 19(1), 1–10 (1948)

    Article  CAS  Google Scholar 

  34. J. Lancaster, A review of the influence of environmental humidity and water on friction, lubrication and wear. Tribol. Int. 23(6), 371–389 (1990)

    Article  CAS  Google Scholar 

  35. C. Pritchard, J. Midgley, The effect of humidity on the friction and life of unbonded molybdenum disulphide films. Wear 13(1), 39–50 (1969)

    Article  CAS  Google Scholar 

  36. T. Scharf, S. Prasad, Solid lubricants: a review. J. Mater. Sci. 48(2), 511–531 (2013)

    Article  CAS  Google Scholar 

  37. M. El-Sherbiny, F. Salem, Tribological properties of PVD silver films. ASLE Trans. 29(2), 223–228 (1986)

    Article  CAS  Google Scholar 

  38. N. Myshkin, M. Petrokovets, A. Kovalev, Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribol. Int. 38(11–12), 910–921 (2005)

    Article  CAS  Google Scholar 

  39. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, vol. 1 (Oxford University Press, Oxford, 2001)

    Google Scholar 

  40. C.M. Pooley, D. Tabor, Friction and molecular structure: the behaviour of some thermoplastics. Proc. R. Soc. Lond. A 329(1578), 251–274 (1972)

    Article  CAS  Google Scholar 

  41. K.R. Makinson, D. Tabor, The friction and transfer of polytetrafluoroethylene. Proc. R. Soc. Lond. A 281(1384), 49–61 (1964)

    Article  CAS  Google Scholar 

  42. S. Bahadur, D. Tabor, The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984)

    Article  CAS  Google Scholar 

  43. M. Brehob et al., The potential of carbon-based memory systems, in Records of the 1999 IEEE International Workshop on Memory Technology, Design and Testing, 1999 (IEEE, 1999)

    Google Scholar 

  44. S. Prasad, J. Zabinski, Lubricants: super slippery solids. Nature 387(6635), 761 (1997)

    Article  CAS  Google Scholar 

  45. P. John, J. Zabinski, Sulfate based coatings for use as high temperature lubricants. Tribol. Lett. 7(1), 31–37 (1999)

    Article  CAS  Google Scholar 

  46. C. Donnet, A. Erdemir, Tribology of diamond-like carbon films: fundamentals and applications (Springer, Cham, 2007)

    Google Scholar 

  47. I. Sugimoto, S. Miyake, Oriented hydrocarbons transferred from a high performance lubricative amorphous C: H: Si film during sliding in a vacuum. Appl. Phys. Lett. 56(19), 1868–1870 (1990)

    Article  CAS  Google Scholar 

  48. C. Donnet et al., Diamond-like carbon-based functionally gradient coatings for space tribology. Surf. Coat. Technol. 120, 548–554 (1999)

    Article  Google Scholar 

  49. J. Andersson, R. Erck, A. Erdemir, Friction of diamond-like carbon films in different atmospheres. Wear 254(11), 1070–1075 (2003)

    Article  CAS  Google Scholar 

  50. D. Berman, A. Erdemir, A.V. Sumant, Graphene: a new emerging lubricant. Mater. Today 17(1), 31–42 (2014)

    Article  CAS  Google Scholar 

  51. D. Berman et al., Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348(6239), 1118–1122 (2015)

    Article  CAS  Google Scholar 

  52. A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015)

    Article  CAS  Google Scholar 

  53. K. Shavanova et al., Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2), 223 (2016)

    Article  CAS  Google Scholar 

  54. S.F. Brown, Base oil groups: manufacture, properties and performance. Tribol. Lubr. Technol. 71(4), 32 (2015)

    Google Scholar 

  55. T. Zolper et al., Lubrication properties of polyalphaolefin and polysiloxane lubricants: molecular structure-tribology relationships. Tribol. Lett. 48(3), 355–365 (2012)

    CAS  Google Scholar 

  56. M. Greaves, Oil soluble synthetic polyalkylene glycols a new type of group V base oil. Lube Mag. 104, 21–24 (2011)

    Google Scholar 

  57. D.M. Pirro, M. Webster, E. Daschner, Lubrication Fundamentals, Revised and Expanded (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  58. P. Nagendramma, S. Kaul, Development of ecofriendly/biodegradable lubricants: an overview. Renew. Sustain. Energy Rev. 16(1), 764–774 (2012)

    Article  CAS  Google Scholar 

  59. A. Pensado, M. Comunas, J. Fernández, The pressure–viscosity coefficient of several ionic liquids. Tribol. Lett. 31(2), 107–118 (2008)

    Article  CAS  Google Scholar 

  60. J.G. Huddleston et al., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3(4), 156–164 (2001)

    Article  CAS  Google Scholar 

  61. A.E. Somers et al., A review of ionic liquid lubricants. Lubricants 1(1), 3–21 (2013)

    Article  Google Scholar 

  62. A.H. Battez et al., Phosphonium cation-based ionic liquids as neat lubricants: physicochemical and tribological performance. Tribol. Int. 95, 118–131 (2016)

    Article  CAS  Google Scholar 

  63. J. Qu et al., Ionic liquids as novel lubricants and additives for diesel engine applications. Tribol. Lett. 35(3), 181–189 (2009)

    Article  CAS  Google Scholar 

  64. M.-D. Bermúdez et al., Ionic liquids as advanced lubricant fluids. Molecules 14(8), 2888–2908 (2009)

    Article  CAS  Google Scholar 

  65. A. Jimenez et al., Room temperature ionic liquids as lubricant additives in steel–aluminium contacts: influence of sliding velocity, normal load and temperature. Wear 261(3–4), 347–359 (2006)

    Article  CAS  Google Scholar 

  66. A.H. Battez et al., Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266(11–12), 1224–1228 (2009)

    Article  CAS  Google Scholar 

  67. B. Phillips, J. Zabinski, Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17(3), 533–541 (2004)

    Article  CAS  Google Scholar 

  68. J. Qu et al., Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22(3), 207–214 (2006)

    Article  CAS  Google Scholar 

  69. A.H. Battez et al., Two phosphonium cation-based ionic liquids used as lubricant additive: Part I: Film thickness and friction characteristics. Tribol. Int. 107, 233–239 (2017)

    Article  CAS  Google Scholar 

  70. G. Goindi et al., Investigation of ionic liquids as additives to canola oil in minimum quantity lubrication milling of plain medium carbon steel. Int. J. Adv. Manuf. Technol. 94(1–4), 881–896 (2018)

    Article  Google Scholar 

  71. B. Bhushan, M. Palacio, B. Kinzig, AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films. J. Colloid Interface Sci. 317(1), 275–287 (2008)

    Article  CAS  Google Scholar 

  72. F. Zhou, Y. Liang, W. Liu, Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38(9), 2590–2599 (2009)

    Article  CAS  Google Scholar 

  73. R. Gusain et al., Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity. Appl. Surf. Sci. 364, 878–885 (2016)

    Article  CAS  Google Scholar 

  74. M. Palacio, B. Bhushan, Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv. Mater. 20(6), 1194–1198 (2008)

    Article  CAS  Google Scholar 

  75. S. Zhang et al., Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data 35(4), 1475–1517 (2006)

    Article  CAS  Google Scholar 

  76. H. Tokuda et al., Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108(42), 16593–16600 (2004)

    Article  CAS  Google Scholar 

  77. H. Tokuda et al., Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109(13), 6103–6110 (2005)

    Article  CAS  Google Scholar 

  78. H.L. Ngo et al., Thermal properties of imidazolium ionic liquids. Thermochim. Acta 357, 97–102 (2000)

    Article  Google Scholar 

  79. T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084 (1999)

    Article  CAS  Google Scholar 

  80. R. Hagiwara, Y. Ito, Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluor. Chem. 105(2), 221–227 (2000)

    Article  CAS  Google Scholar 

  81. W. Liu et al., Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13(2), 81–85 (2002)

    Article  CAS  Google Scholar 

  82. S. Zhang et al., Vacuum tribological performance of phosphonium-based ionic liquids as lubricants and lubricant additives of multialkylated cyclopentanes. Tribol. Int. 66, 289–295 (2013)

    Article  CAS  Google Scholar 

  83. A. Suzuki, Y. Shinka, M. Masuko, Tribological characteristics of imidazolium-based room temperature ionic liquids under high vacuum. Tribol. Lett. 27(3), 307–313 (2007)

    Article  CAS  Google Scholar 

  84. K.W. Street Jr. et al., Evaluation of vapor pressure and ultra-high vacuum tribological properties of ionic liquids. Tribol. Trans. 54(6), 911–919 (2011)

    Article  CAS  Google Scholar 

  85. W. Morales et al., Tribological testing and thermal analysis of an alkyl sulfate series of ionic liquids for use as aerospace lubricants. Tribol. Trans. 55(6), 815–821 (2012)

    Article  CAS  Google Scholar 

  86. H. Xiao, Ionic liquid lubricants: basics and applications. Tribol. Trans. 60(1), 20–30 (2017)

    Article  CAS  Google Scholar 

  87. I. Perissi et al., High temperature corrosion properties of ionic liquids. Corros. Sci. 48(9), 2349–2362 (2006)

    Article  CAS  Google Scholar 

  88. ASTM D288-61 Definitions of terms relating to petroleum, 1978

    Google Scholar 

  89. K. Bauer, D. Garbe, H. Surburg, Ullmann’s encyclopedia of industrial chemistry. Ullmann’s Encyclopedia of Industrial Chemistry, vol. 11 (Wiley, Weinheim, 1988)

    Google Scholar 

  90. W.H. Bauer, A.P. Finkelstein, S.E. Wiberley, Flow properties of lithium stearate-oil model greases as functions of soap concentration and temperature. ASLE Trans. 3(2), 215–224 (1960)

    Article  CAS  Google Scholar 

  91. F. Cyriac et al., Effect of thickener particle geometry and concentration on the grease EHL film thickness at medium speeds. Tribol. Lett. 61(2), 18 (2016)

    Article  Google Scholar 

  92. N. Scarlett, Paper 21: Use of grease in rolling bearings, in Proceedings of the Institution of Mechanical Engineers, Conference Proceedings (SAGE Publications Sage, London, 1967)

    Article  Google Scholar 

  93. P.M. Lugt, Grease Lubrication in Rolling Bearings (Wiley, Chichester, 2012)

    Book  Google Scholar 

  94. P.M. Lugt, Modern advancements in lubricating grease technology. Tribol. Int. 97, 467–477 (2016)

    Article  CAS  Google Scholar 

  95. C. Mike Johnson, C. Contributing, Understanding grease construction and function. Tribol. Lubr. Technol. 3, 3 (2008)

    Google Scholar 

  96. C. Walther, The evaluation of viscosity data. Erdol Teer 7, 382–384 (1931)

    CAS  Google Scholar 

  97. S. Bair, Temperature and pressure dependence of viscosity, in Encyclopedia of Tribology, ed. by Q.J. Wang, Y.-W. Chung (Springer, New York, 2013), pp. 3533–3538

    Chapter  Google Scholar 

  98. C. Barus, ART. X.—Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. (1880–1910) 45(266), 87 (1893)

    Article  Google Scholar 

  99. E. McEwen, The effect of variation of viscosity with pressure on the load-carrying capacity of the oil film between gear-teeth. J. Inst. Pet. 38(344–345), 646–672 (1952)

    CAS  Google Scholar 

  100. C. Roelands, J. Vlugter, H. Waterman, The viscosity-temperature-pressure relationship of lubricating oils and its correlation with chemical constitution. J. Basic Eng. 85(4), 601–607 (1963)

    Article  CAS  Google Scholar 

  101. S. Yasutomi, S. Bair, W. Winer, An application of a free volume model to lubricant rheology I—dependence of viscosity on temperature and pressure. J. Tribol. 106(2), 291–302 (1984)

    Article  CAS  Google Scholar 

  102. M.M. Cross, Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Interface Sci. 20, 417–437 (1965)

    Article  CAS  Google Scholar 

  103. F. Cyriac, P.M. Lugt, R. Bosman, Impact of water on the rheology of lubricating greases. Tribol. Trans. 59(4), 679–689 (2016)

    Article  CAS  Google Scholar 

  104. R. Houwink, H.K. De Decker, H.K. DeDecker, Elasticity, Plasticity and Structure of Matter (Cambridge University Press, Cambridge, 1971)

    Google Scholar 

  105. H. Green, Industrial Rheology and Rheological Structures (Wiley, New York, 1949)

    Google Scholar 

  106. H. Barnes, K. Walters, The yield stress myth? Rheol. Acta 24(4), 323–326 (1985)

    Article  CAS  Google Scholar 

  107. F. Cyriac, On rheology, film-build-up and water in grease lubricated bearings, 2016

    Google Scholar 

  108. J.C. Bart, E. Gucciardi, S. Cavallaro, Biolubricants: Science and Technology (Elsevier, Amsterdam, 2012)

    Google Scholar 

  109. P. Ghosh et al., Shear stability of polymers used as viscosity modifiers in lubricating oils, 1998

    Google Scholar 

  110. I. Minami, Molecular science of lubricant additives. Appl. Sci. 7(5), 445 (2017)

    Article  CAS  Google Scholar 

  111. L.R. Rudnick, Lubricant Additives: Chemistry and Applications (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  112. Z. Tang, S. Li, A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 18(3), 119–139 (2014)

    Article  CAS  Google Scholar 

  113. M. Akbulut, Nanoparticle-based lubrication systems. J. Powder Metall. Min. 1, e101 (2012)

    Article  Google Scholar 

  114. K. Lee et al., Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 35(2), 127–131 (2009)

    Article  CAS  Google Scholar 

  115. D. Kenbeek, T. Buenemann, H. Rieffe, Review of organic friction modifiers-contribution to fuel efficiency? SAE Technical Paper, 2000

    Google Scholar 

  116. M. Beltzer, S. Jahanmir, Effect of additive molecular structure on friction. Lubr. Sci. 1(1), 3–26 (1988)

    Article  CAS  Google Scholar 

  117. S. Jahanmir, M. Beltzer, Effect of additive molecular structure on friction coefficient and adsorption. J. Tribol. 108(1), 109–116 (1986)

    Article  CAS  Google Scholar 

  118. C. Allen, E. Drauglis, Boundary layer lubrication: monolayer or multilayer. Wear 14(5), 363–384 (1969)

    Article  CAS  Google Scholar 

  119. A.S. Akhmatov, Molecular Physics of Boundary Friction, vol. 2108 (Israel Program for Scientific Translations, 1966)

    Google Scholar 

  120. J. Davidson et al., Molecular dynamics simulations to aid the rational design of organic friction modifiers. J. Mol. Graph. Model. 25(4), 495–506 (2006)

    Article  CAS  Google Scholar 

  121. R. Castle, C. Bovington, The behaviour of friction modifiers under boundary and mixed EHD conditions. Lubr. Sci. 15(3), 253–263 (2003)

    Article  CAS  Google Scholar 

  122. C. Bovington, Friction, wear and the role of additives in controlling them, in Chemistry and Technology of Lubricants (Springer, New York, 2010), pp. 77–105

    Google Scholar 

  123. E.S. Forbes, Antiwear and extreme pressure additives for lubricants. Tribology 3(3), 145–152 (1970)

    Article  CAS  Google Scholar 

  124. W. Piekoszewski, M. Szczerek, W. Tuszynski, The action of lubricants under extreme pressure conditions in a modified four-ball tester. Wear 249(3–4), 188–193 (2001)

    Article  CAS  Google Scholar 

  125. M. Kawamura, K. Fujita, Organic sulphur and phosphorus compounds as extreme pressure additives. Wear 72(1), 45–53 (1981)

    Article  CAS  Google Scholar 

  126. R.A. Soldi et al., Polymethacrylates: pour point depressants in diesel oil. Eur. Polym. J. 43(8), 3671–3678 (2007)

    Article  CAS  Google Scholar 

  127. R.M. Nasser, The Behavior of Some Acrylate Copolymers as Lubricating Oil Additives (LAP LAMBERT Academic Publishing, 2015)

    Google Scholar 

  128. A.V. Beek, Advanced Engineering Design. Lifetime Performance and Reliability (TU Delft, Delft, 2012)

    Google Scholar 

  129. A.M. Barnes, K. Bartle, V.R.A. Thibon, A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil. Tribol. Int. 34(6), 389–395 (2001)

    Article  CAS  Google Scholar 

  130. S. Shahnazar, S. Bagheri, S.B. Abd Hamid, Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy 41(4), 3153–3170 (2015)

    Article  CAS  Google Scholar 

  131. Á. Beck, G. Pölczmann, Z. Eller, J. Hancsók, Investigation of the effect of detergent-dispersant additives on the oxidation stability of biodiesel, diesel fuel and their blends. Biomass Bioenergy 66, 328–336 (2014)

    Article  CAS  Google Scholar 

  132. P. Sassiat, G. Machtalere, F. Hui, H. Kolodziejczyk, R. Rosset, Liquid chromatographic determination of base oil composition and content in lubricating oils containing dispersants of the polybutenylsuccinimide type. Anal. Chim. Acta 306(1), 73–79 (1995)

    Article  CAS  Google Scholar 

  133. L.K. Hudson, J. Eastoe, P.J. Dowding, Nanotechnology in action: overbased nanodetergents as lubricant oil additives. Adv. Colloid Interface Sci. 123, 123–126 (2006)

    Google Scholar 

  134. M. Reyes, A. Neville, The effect of anti-wear additives, detergents and friction modifiers in boundary lubrication of traditional Fe-base materials. Tribol. Ser. 41, 57–65 (2003)

    Article  CAS  Google Scholar 

  135. Z.E. Dadach, Applied research: foaming in sea water cooling tower, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Febin Cyriac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cyriac, F., Akchurin, A. (2020). Thin Film Lubrication, Lubricants and Additives. In: Katiyar, J., Ramkumar, P., Rao, T., Davim, J. (eds) Tribology in Materials and Applications. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-47451-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47451-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47450-8

  • Online ISBN: 978-3-030-47451-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics