Skip to main content

Empirical Confidence Models for Supervised Machine Learning

  • Conference paper
  • First Online:
Book cover Advances in Artificial Intelligence (Canadian AI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12109))

Included in the following conference series:

  • 2312 Accesses

Abstract

We present a new methodology for assessing when data-based predictive models can be trusted. Particularly, we propose to learn a model from experimentation that determines, for a given labeled data set and a learning technique, when the model generated by the respective technique on the given data can be trusted to perform within specified accuracy limits. That is to say, we apply machine learning to machine learning: We repeatedly use a technique to generate models, referred as primary model, for a supervised regression problem. Based on the resulting model performance on a hold-out validation set, we then learn when the trained primary model can be expected to perform well and when there is a concern regarding the trustworthiness of that model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in ai safety. arXiv preprint arXiv:1606.06565 (2016)

  2. Bhattacharyya, S.: Confidence in predictions from random tree ensembles. Knowl. Inf. Syst. 35(2), 391–410 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bosnić, Z., Kononenko, I.: Estimation of individual prediction reliability using the local sensitivity analysis. Appl. Intell. 29(3), 187–203 (2008)

    Article  Google Scholar 

  4. Bosnić, Z., Kononenko, I.: Automatic selection of reliability estimates for individual regression predictions. Knowl. Eng. Rev. 25(1), 27–47 (2010)

    Article  Google Scholar 

  5. Bosnić, Z., Kononenko, I.: Correction of regression predictions using the secondary learner on the sensitivity analysis outputs. Comput. Inform. 29(6), 929–946 (2010)

    MATH  Google Scholar 

  6. Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. In: Advances in Neural Information Processing Systems, pp. 4299–4307 (2017)

    Google Scholar 

  7. Dietvorst, B.J., Simmons, J.P., Massey, C.: Algorithm aversion: people erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 144(1), 114–126 (2015)

    Article  Google Scholar 

  8. Asuncion, A., Newman, D.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007)

    Google Scholar 

  9. Groce, A., et al.: You are the only possible oracle: effective test selection for end users of interactive machine learning systems. IEEE Trans. Software Eng. 40(3), 307–323 (2014)

    Article  Google Scholar 

  10. Heskes, T.: Practical confidence and prediction intervals. In: Advances in Neural Information Processing Systems, pp. 176–182 (1997)

    Google Scholar 

  11. Jiang, H., Kim, B., Guan, M.Y., Gupta, M.: To trust or not to trust a classifier. In: 32nd International Conference on Neural Information Processing Systems, pp. 5546–5557 (2018)

    Google Scholar 

  12. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  13. Lipton, Z.C., Wang, Y.X., Smola, A.: Detecting and correcting for label shift with black box predictors. arXiv preprint arXiv:1802.03916 (2018)

  14. Matsumoto, E.Y., Del-Moral-Hernandez, E.: Improving regression predictions using individual point reliability estimates based on critical error scenarios. Inf. Sci. 374, 65–84 (2016)

    Article  Google Scholar 

  15. Nushi, B., Kamar, E., Horvitz, E.: Towards accountable AI: hybrid human-machine analyses for characterizing system failure. In: Sixth AAAI Conference on Human Computation and Crowdsourcing (2018)

    Google Scholar 

  16. Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction with nearest neighbours. J. Artif. Intell. Res. 40, 815–840 (2011)

    Article  MathSciNet  Google Scholar 

  17. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)

    Google Scholar 

  18. Pevec, D., Kononenko, I.: Prediction intervals in supervised learning for model evaluation and discrimination. Appl. Intell. 42(4), 790–804 (2014). https://doi.org/10.1007/s10489-014-0632-z

    Article  Google Scholar 

  19. Prahl, A., Van Swol, L.: Understanding algorithm aversion: when is advice from automation discounted? J. Forecast. 36(6), 691–702 (2017)

    Article  MathSciNet  Google Scholar 

  20. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9, 371–421 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  22. Yeomans, M., Shah, A., Mullainathan, S., Kleinberg, J.: Making sense of recommendations. J. Behav. Decis. Making 32(4), 403–414 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita P. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castro, M.P., Sellmann, M., Yang, Z., Virani, N. (2020). Empirical Confidence Models for Supervised Machine Learning. In: Goutte, C., Zhu, X. (eds) Advances in Artificial Intelligence. Canadian AI 2020. Lecture Notes in Computer Science(), vol 12109. Springer, Cham. https://doi.org/10.1007/978-3-030-47358-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47358-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47357-0

  • Online ISBN: 978-3-030-47358-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics