Skip to main content

Gravity-Turn-Assisted Optimal Guidance Law

  • Chapter
  • First Online:
Optimal Guidance and Its Applications in Missiles and UAVs

Part of the book series: Springer Aerospace Technology ((SAT))

  • 880 Accesses

Abstract

This chapter proposes a new optimal guidance law that directly utilizes, instead of compensating, the gravity for accelerating missiles. The desired collision triangle that considers both gravity and vehicle’s axial acceleration is analytically derived based on geometric conditions. The concept of instantaneous zero-effort-miss is introduced to allow for analytical guidance command derivation. The proposed optimal guidance law is derived by using the optimal error dynamics proposed in Chap. 2. The relationships of the proposed formulation with conventional PNG and guidance-to-collision (G2C) are analyzed and the results show that the proposed guidance law encompasses previously suggested approaches. The significant contribution of the proposed guidance law lies in that it ensures zero final guidance command and enables energy saving with the aid of utilizing gravity turn. Nonlinear numerical simulations clearly demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gazit R, Gutman S (1991) Development of guidance laws for a variable-speed missile. Dyn Control 1(2):177–198

    Article  MathSciNet  Google Scholar 

  2. Gazit R (1993) Guidance to collision of a variable-speed missile. In: Proceedings of the first IEEE regional conference on aerospace control systems. IEEE, Westlake Village, CA, pp 734–737

    Google Scholar 

  3. Shima T, Golan OM (2012) Exo-atmospheric guidance of an accelerating interceptor missile. J Franklin Inst 349(2):622–637

    Google Scholar 

  4. Reisner Daniel, Shima Tal (2013) Optimal guidance-to-collision law for an accelerating exoatmospheric interceptor missile. J Guid Control Dyn 36(6):1695–1708

    Article  Google Scholar 

  5. Conn AR, Gould NIM, Toint PL (2000) Trust region methods, vol 1. SIAM, Philadelphia, PA

    Google Scholar 

  6. Kanzow Christian, Yamashita Nobuo, Fukushima Masao (2004) Levenberg-marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J Comput Appl Math 172(2):375–397

    Article  MathSciNet  Google Scholar 

  7. Zarchan P (2012) Tactical and strategic missile guidance. American Institute of Aeronautics and Astronautics, Reston, VA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoming He .

Appendix. Closed-Form Solution of Eqs. (6.16)–(6.18)

Appendix. Closed-Form Solution of Eqs. (6.16)–(6.18)

Noting from Eqs. (6.16)–(6.18) that the solution requires the integration of

$$\begin{aligned} h\left( \gamma _{M} \right) \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n} \end{aligned}$$
(6.60)

where \(h\left( \gamma _{M} \right) \) is a function of secant and tangent functions. For an arbitrary function \(\beta \left( \gamma _{M} \right) \), we have

$$\begin{aligned} \begin{aligned}&\frac{d}{d\gamma _{M} } \left[ \beta \left( \gamma _{M} \right) \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n} \right] \\&\quad \quad \quad =\frac{d\beta \left( \gamma _{M} \right) }{d\gamma _{M} } \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n} +n \beta \left( \gamma _{M} \right) \sec \gamma _{M} \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n}\\&\quad \quad \quad =\left( \frac{d\beta \left( \gamma _{M} \right) }{d\gamma _{M} } +n\beta \left( \gamma _{M} \right) \sec \gamma _{M} \right) \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n} \end{aligned} \end{aligned}$$
(6.61)

which reveals that the general solution of \(\int h\left( \gamma _{M} \right) \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n} d\gamma _{M} \) can be obtained by equalizing \(h\left( \gamma _{M} \right) \) with \(\frac{d\beta \left( \gamma _{M} \right) }{d\gamma _{M} } +n\beta \left( \gamma _{M} \right) \sec \gamma _{M} \).

Based on the properties of secant and tangent functions, the function \(\beta \left( \gamma _{M} \right) \) in solving Eq. (6.16)–(6.18) can be formulated as a general form as

$$\begin{aligned} \beta \left( \gamma _{M} \right) =a_{1} \sec \gamma _{M} +a_{2} \tan \gamma _{M} +a_{3} \sec ^{2} \gamma _{M} +a_{4} \tan ^{2} \gamma _{M} +a_{5} \sec \gamma _{M} \tan \gamma _{M} \end{aligned}$$
(6.62)

where \(a_{i} \), \(i=1,2,3,4,5\), are unknown constant coefficients to be determined.

Differentiating Eq. (6.62) with respect to \(\gamma _{M} \) gives

$$\begin{aligned} \begin{aligned} \frac{d\beta \left( \gamma _{M} \right) }{d\gamma _{M} } = \,\,&a_{1} \sec \gamma _{M} \tan \gamma _{M} +a_{2} \sec ^{2} \gamma _{M} +2a_{3} \sec ^{2} \gamma _{M} \tan \gamma _{M} \\&+2a_{4} \sec ^{2} \gamma _{M} \tan \gamma _{M} +a_{5} \left( \sec \gamma _{M} \tan ^{2} \gamma _{M} +\sec ^{3} \gamma _{M} \right) \end{aligned} \end{aligned}$$
(6.63)

Substituting Eqs. (6.62) and (6.63) into Eq. (6.61) yields

$$\begin{aligned} \begin{aligned}&\frac{d}{d\gamma _{M} } \left[ \beta \left( \gamma _{M} \right) \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n} \right] \\&\quad \quad \quad =\left[ \left( na_{1} +a_{2} \right) \sec ^{2} \gamma _{M} +\left( na_{2} +a_{1} \right) \sec \gamma _{M} \tan \gamma _{M}\right. \\&\quad \quad \quad \quad +\left( na_{3} +a_{5} \right) \sec ^{3} \gamma _{M} +\left( na_{4} +a_{5} \right) \sec \gamma _{M} \tan ^{2} \gamma _{M} \\&\quad \quad \quad \quad \left. +\left( na_{5} +2a_{3} +2a_{4} \right) \sec ^{2} \gamma _{M} \tan \gamma _{M}\right] \left| \sec \gamma _{M} +\tan \gamma _{M} \right| ^{n} \end{aligned} \end{aligned}$$
(6.64)

For Eq. (6.16), we have \(h\left( \gamma _{M} \right) =\sec ^{2} \gamma _{M} \), \(n=\kappa \). Comparing the coefficients results in

$$\begin{aligned} \left\{ \begin{array}{l} {\kappa a_{1} +a_{2} =1} \\ {\kappa a_{2} +a_{1} =0} \\ {\kappa a_{3} +a_{5} =0} \\ {\kappa a_{4} +a_{5} =0} \\ {\kappa a_{5} +2a_{3} +2a_{4} =0} \end{array}\right. \end{aligned}$$
(6.65)

Solving Eq. (6.65) gives the unknown coefficients as

$$\begin{aligned} a_{1} =\frac{\kappa }{\kappa ^{2} -1} ,\quad a_{2} =-\frac{1}{\kappa ^{2} -1} ,\quad a_{3} =a_{4} =a_{5} =0 \end{aligned}$$
(6.66)

Then, the closed-form solution of Eq. (6.16) is given by

$$\begin{aligned} t\left( \gamma _{M} \right) =t\left( \gamma _{M0} \right) -\frac{C}{g} \left[ f_{t} \left( \gamma _{M} \right) -f_{t} \left( \gamma _{M0} \right) \right] \end{aligned}$$
(6.67)

For Eq. (6.17), we have \(h\left( \gamma _{M} \right) =\sec ^{2} \gamma _{M} \), \(n=2\kappa \). Replacing \(\kappa \) with \(2\kappa \) in Eq. (6.65) leads to the closed-form solution of Eq. (6.17) as

$$\begin{aligned} x_{M} \left( \gamma _{M} \right) =x_{M} \left( \gamma _{M0} \right) -\frac{C^{2} }{g} \left[ f_{x} \left( \gamma _{M} \right) -f_{x} \left( \gamma _{M0} \right) \right] \end{aligned}$$
(6.68)

For Eq. (6.18), we have \(h\left( \gamma _{M} \right) =\sec ^{2} \gamma _{M} \tan \gamma _{M} \), \(n=2\kappa \). Comparing the coefficients gives the following coupled equations

$$\begin{aligned} \left\{ \begin{array}{l} {\kappa a_{1} +a_{2} =0} \\ {\kappa a_{2} +a_{1} =0} \\ {\kappa a_{3} +a_{5} =0} \\ {\kappa a_{4} +a_{5} =0} \\ {\kappa a_{5} +2a_{3} +2a_{4} =1} \end{array}\right. \end{aligned}$$
(6.69)

Solving Eq. (6.69) yields

$$\begin{aligned} a_{1} =a_{2} =0,\quad a_{3} =-\frac{1}{\kappa ^{2} -4} ,\quad a_{4} =-\frac{1}{\kappa ^{2} -4} ,\quad a_{5} =\frac{\kappa }{\kappa ^{2} -4} \end{aligned}$$
(6.70)

which gives the closed-form solution of Eq. (6.18) as

$$\begin{aligned} y_{M} \left( \gamma _{M} \right) =y_{M} \left( \gamma _{M0} \right) -\frac{C^{2} }{g} \left[ f_{y} \left( \gamma _{M} \right) -f_{y} \left( \gamma _{M0} \right) \right] \end{aligned}$$
(6.71)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, S., Lee, CH., Shin, HS., Tsourdos, A. (2020). Gravity-Turn-Assisted Optimal Guidance Law. In: Optimal Guidance and Its Applications in Missiles and UAVs. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-47348-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47348-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47347-1

  • Online ISBN: 978-3-030-47348-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics