Advertisement

IFSTOOL - Software for Intuitionistic Fuzzy Sets Necessity, Possibility and Circle Operators

  • Nora AngelovaEmail author
Conference paper
  • 8 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1081)

Abstract

The present paper introduces the augmented functionality of IFSTool software. Several new operators have been implemented in the software, which allows the end user to check validity of certain axioms involving them.

Keywords

Intuitionistic fuzzy sets Operators Software 

References

  1. 1.
    Dimitrov, D.: IFSTool - software for intuitionistic fuzzy sets. Issues Intuitionistic Fuzzy Sets Generalized Nets 9, 61–69 (2011) Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer Physica-Verlag, Heidelberg (1999) CrossRefGoogle Scholar
  3. 3.
    Atanassov, K.: Intuitionistic Fuzzy Logics. Springer, Cham (2017)CrossRefGoogle Scholar
  4. 4.
    Atanassov, K.: On the concept of Intuitionistic Fuzzy Sets Theory. Springer Google Scholar
  5. 5.
    Atanassov, K.: Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia, June 1983 (Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.)Google Scholar
  6. 6.
    Atanassov, K., Szmidt, E., Angelova, N.: Properties of the intuitionistic fuzzy implication \(\rightarrow \) 187. Notes Intuitionistic Fuzzy Sets 23(3), 3–8 (2017)zbMATHGoogle Scholar
  7. 7.
    Atanassov K., de Tre, G., Angelova, N.: On a special type of intuitionistic fuzzy implications. Notes Intuitionistic Fuzzy Sets 23(4), 2–9 (2017). Print ISSN 1310-4926, Online ISSN 2367-8283Google Scholar
  8. 8.
    Atanassov, K., Szmidt, E., Kacprzyk, J., Angelova, N.: Properties of the intuitionistic fuzzy implication \(\rightarrow \) 188. Notes Intuitionistic Fuzzy Sets 23(5), 1–6 (2017). Print ISSN 1310-4926, Online ISSN 2367-8283Google Scholar
  9. 9.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes Intuitionistic Fuzzy Sets 23(5), 29–41 (2017). Print ISSN 1310-4926, Online ISSN 2367-8283Google Scholar
  10. 10.
    Atanassov, K., Angelova, N.: On intuitionistic fuzzy negations, law for excluded middle and De Morgan’s Laws. Issues IFSs GNs 12, 53–60 (2015/2016). ISBN 978-83-61551-10-2Google Scholar
  11. 11.
    Atanassov, K., Angelova, N.: Properties of the intuitionistic fuzzy implications and negations. Notes Intuitionistic Fuzzy Sets 22, 25–33 (2016). ISSN 1310-4926Google Scholar
  12. 12.
    Atanassov, K., Angelova, N.: Maximal and minimal intuitionistic fuzzy negations. In: Atanassov, K., Baczynski, M., Drewniak, J., Kacprzyk, J., Krawczak, M., Szmidt, E., Wygralak, M., Zadrozny, S. (eds.) Modern Approaches in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Volume 1: Foundations, pp. 51–61. SRI-PAS, Warsaw (2014)Google Scholar
  13. 13.
    Angelova, N., Atanassov, K.: Intuitionistic fuzzy implications and Klir-Yuan’s axioms. In: Novel Developments in Uncertainty Representation and Processing, Proceedings of 14th International Conference on Intuitionistic Fuzzy Sets and Generalized Nets. Advances in Intuitionistic Fuzzy Sets and Generalized Nets, vol. 401, pp. 97–110. Springer (2015)Google Scholar
  14. 14.
    Angelova, N., Marinov, E., Atanassov, K.: Intuitionistic fuzzy implications and Kolmogorov’s and Lukasiewisz–Tarski’s axioms of logic. Notes Intuitionistic Fuzzy Sets 21(2), 35–42 (2015). ISSN 1310–4926Google Scholar
  15. 15.
    Angelova, N., Atanasov, K.: Intuitionistic fuzzy implications and the axioms of intuitionistic logic. In: 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), Gijon, Spain, 30 June–03 July 2015, pp. 1578–1584 (2015). ISSN 1951-6851, ISBN 978-94-62520-77-6Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsSofia University “St. Kliment Ohridski”SofiaBulgaria

Personalised recommendations