Advertisement

The Proposal of Fuzzy Observation and Detection of Massive Data DDOS Attack Threat

  • Hubert Zarzycki
  • Łukasz Apiecionek
  • Jacek M. CzerniakEmail author
  • Dawid Ewald
Conference paper
  • 9 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1081)

Abstract

This article presents a potential implementation of OFN notation for discovering and protecting network from Distributed Denial of Service attacks. DDoS attacks are able to block web servers and could be launched from any place in the network. In this article some real experimental results are presented. The prepared network and DDoS attack tool was used for collecting massive data of IP packets, then OFN implementation was used for discovering attacks. As a results, the authors present a problem and tool which, once implemented in IP network, could deal with DDoS attack using OFN notation.

Notes

Acknowledgment

This article is based upon work from COST Action IC1406 High-Performance Modeling and Simulation for Big Data Applications (cHiPSet), supported by COST (European Cooperation in Science and Technology).

References

  1. 1.
    Apiecionek, L., Czerniak, J.M.: QoS solution for network resource protection. In: Informatics 2013: Proceedings of the Twelfth International Conference on Informatics, pp. 73–76 (2013)Google Scholar
  2. 2.
    Apiecionek, L., Czerniak, J.M., Dobrosielski, W.T.: Quality of services method as a DDoS protection tool. In: Intelligent Systems 2014, Vol 2: Tools, Architectures, Systems, Applications, vol. 323, pp. 225–234 (2015)Google Scholar
  3. 3.
    Apiecionek, L., Czerniak, J.M., Zarzycki, H.: Protection tool for distributed denial of services attack. In: Beyond Databases, Architectures and Structures, BDAS 2014, vol. 424, pp. 405–414 (2014)Google Scholar
  4. 4.
    Bucko, R., Vince, T., Molnar, J., Dziak, J., Gladyr, A.: Safety system for intelligent building. In: 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, 15–17 November 2017, pp. 252–255 (2017)Google Scholar
  5. 5.
    Czerniak, J., Ewald, D., Macko, M., Smigielski, G., Tyszczuk, K.: Approach to the monitoring of energy consumption in eco-grinder based on ABC optimization. In: Beyond Databases, Architectures and Structures, BDAS 2015, vol. 521, pp. 516–529 (2015)Google Scholar
  6. 6.
    Czerniak, J.M.: OFNAnt method based on TSP ant colony optimization. In: Prokopowicz, P., Czerniak, J.M., Mikolajewski, D., Apiecionek, L., Slezak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosinski. Studies in Fuzziness and Soft Computing, chap. 12, pp. 207–222. Springer, Cham (2017)Google Scholar
  7. 7.
    Czerniak, J.M., Dobrosielski, W.T., Filipowicz, I.: Comparing fuzzy numbers using defuzzificators on OFN shapes. In: Prokopowicz, P., Czerniak, J.M., Mikolajewski, D., Apiecionek, L., Slezak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosinski. Studies in Fuzziness and Soft Computing, chap. 6, pp. 207–222. Springer, Cham (2017)Google Scholar
  8. 8.
    Czerniak, J.M., Zarzycki, H.: Artificial Acari Optimization as a new strategy for global optimization of multimodal functions. J. Comput. Sci. 22, 209–227 (2017)CrossRefGoogle Scholar
  9. 9.
    Czerniak, J.M., Zarzycki, H., Apiecionek, Ł., Palczewski, W., Kardasz, P.: A cellular automata-based simulation tool for real fire accident prevention. Math. Probl. Eng. 2018, 1–12 (2018). Article no. 3058241Google Scholar
  10. 10.
    Czerniak, J.M., Zarzycki, H., Ewald, D.: AAO as a new strategy in modeling and simulation of constructional problems optimization. Simul. Model. Pract. Theory (2017). http://www.sciencedirect.com/science/article/pii/S1569190X17300709
  11. 11.
    Czerniak, J., Filipowicz, I., Ewald, D.: The novel shape normalization operator for fuzzy numbers in OFN notation, vol. 641, pp. 548–562 (2018)Google Scholar
  12. 12.
    Czerniak, J., Macko, M., Ewald, D.: The CutMAG as a new hybrid method for multi-edge grinder design optimization. In: Advances in Intelligent Systems and Computing, vol. 401, pp. 327–337 (2016)Google Scholar
  13. 13.
    Czerniak, J., Smigielski, G., Ewald, D., Paprzycki, M.: New proposed implementation of ABC method to optimization of water capsule flight. In: Proceedings of the Federated Conference on Computer Science and Information Systems. ACSIS, vol. 5, pp. 489–493. IEEE Digital Library (2015)Google Scholar
  14. 14.
    Dobrosielski, W.T., Czerniak, J.M., Zarzycki, H., Szczepanski, J.: Fuzzy numbers applied to a heat furnace control. In: Prokopowicz, P., Czerniak, J.M., Mikolajewski, D., Apiecionek, L., Slezak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosinski. Studies in Fuzziness and Soft Computing, chap. 16, pp. 207–222. Springer, Cham (2017)Google Scholar
  15. 15.
    Dobrosielski, W., Czerniak, J., Szczepanski, J., Zarzycki, H.: Two new defuzzification methods useful for different fuzzy arithmetics. In: Atanassov, K., et al. (eds.) Uncertainty and Imprecision in Decision Making and Decision Support: Cross-Fertilization, New Models and Applications, IWIFSGN 2016. Advances in Intelligent Systems and Computing, vol. 559, pp. 83–101. Springer, Cham (2018)Google Scholar
  16. 16.
    Dubois, D., Prade, H., Richard, G.: Multiple-valued extensions of analogical proportions. Fuzzy Sets and Syst. 292, 193–202 (2016). http://www.sciencedirect.com/science/article/pii/S0165011415001682. Special Issue in Honor of Francesc Esteva on the Occasion of his 70th Birthday
  17. 17.
    Dyczkowski, K.: A less cumulative algorithm of mining linguistic browsing patterns in the world wide web (2007)Google Scholar
  18. 18.
    Ewald, D., Czerniak, J., Zarzycki, H.: OFNBee method used for solving a set of benchmarks, vol. 642, pp. 24–35 (2018)Google Scholar
  19. 19.
    Ewald, D., Czerniak, J.M., Paprzycki, M.: A new OFNBee method as an example of fuzzy observance applied for ABC optimization. In: Prokopowicz, P., Czerniak, J.M., Mikolajewski, D., Apiecionek, L., Slezak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosinski. Studies in Fuzziness and Soft Computing, chap. 12, pp. 207–222. Springer, Cham (2017)Google Scholar
  20. 20.
    Farzanegan, A., Vahidipour, S.: Optimization of comminution circuit simulations based on genetic algorithms search method. Miner. Eng. 22, 719–726 (2009)CrossRefGoogle Scholar
  21. 21.
    Gorkemli, B., Ozturk, C., Karaboga, D., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2014)CrossRefGoogle Scholar
  22. 22.
    Inglehart, D., Shedler, G.: Simulation output analysis for local areas computer networks. Research Report RJ 4020 (45068), Research Division, IBM, San Jose, CA, September 1983Google Scholar
  23. 23.
    Jacko, P., Kovac, D., Bucko, R., Vince, T., Kravets, O.: The parallel data processing by Nucleo board with STM32 microcontrollers. In: 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, 15–17 November 2017, pp. 264–267 (2017)Google Scholar
  24. 24.
    Kacprzak, D.: Input-output model based on ordered fuzzy numbers, pp. 171–182. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59614-3_9
  25. 25.
    Kacprzak, M., Starosta, B.: Two approaches to fuzzy implication, pp. 133–154. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59614-3_7
  26. 26.
    Kacprzyk, J., Wilbik, A.: Using fuzzy linguistic summaries for the comparison of time series: an application to the analysis of investment fund quotations. In: IFSA/EUSFLAT Conference, pp. 1321–1326 (2009)Google Scholar
  27. 27.
    Kosinski, W., Prokopowicz, P., Slezak, D.: On algebraic operations on fuzzy reals. In: Advances in Soft Computing, pp. 54–61 (2002)Google Scholar
  28. 28.
    Kovac, D., Beres, M., Kovacova, I., Vince, T., Molnar, J., Dziak, J., Jacko, P., Bucko, R., Tomcikova, I., Schweiner, D.: Circuit elements influence on optimal number of phases of DC/DC buck converter. Electron. Lett. 54(7), 435–436 (2018)CrossRefGoogle Scholar
  29. 29.
    Kovac, D., Kovacova, I., Vince, T., Molnar, J., Perdulak, J., Beres, M., Dziak, J.: An automated measuring laboratory (VMLab) in education. Int. J. Eng. Educ. 32(5, B, SI), 2250–2259 (2016)Google Scholar
  30. 30.
    Kumar, P.: Differential evolution with interpolation based mutation operators for engineering design optimization. In: Advances in Mechanical Engineering and its Applications, pp. 221–231 (2012)Google Scholar
  31. 31.
    Macko, M., Flizikowski, J.: The method of the selection of comminution design for non-brittle materials. In: AIChE Annual Meeting, Conference Proceedings (2010)Google Scholar
  32. 32.
    Marszalek, A., Burczynski, T.: Modeling and forecasting financial time series with ordered fuzzy candlesticks. Inf. Sci. 273, 144–155 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mikolajewska, E., Mikolajewski, D.: Neuroprostheses for increasing disabled patients’ mobility and control. Adv. Clin. Exp. Med. 21(2), 263–272 (2012)Google Scholar
  34. 34.
    Mikolajewska, E., Mikolajewski, D.: Integrated IT environment for people with disabilities: a new concept. Cent. Eur. J. Med. 9(1), 177–182 (2014)Google Scholar
  35. 35.
    Mrozek, D., Dabek, T., Malysiak-Mrozek, B.: Scalable extraction of big macromolecular data in azure data lake environment. Mol. (Basel, Switz.) 24(1), 179 (2019)CrossRefGoogle Scholar
  36. 36.
    Nafchi, A., Moradi, A., Ghanbarzadeh, A., Rezazadeh, A., Soodmand, E.: Solving engineering optimization problems using the bees algorithm, pp. 162–166. IEEExplore (2011)Google Scholar
  37. 37.
    Pant, M., Sharma, T., Singh, V.: Improved local search in artificial bee colony using golden section search. arXiv, pp. 11–20 (2014)Google Scholar
  38. 38.
    Piegat, A.: A new definition of the fuzzy set. Appl. Math. Comput. 15(1), 125–140 (2005)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Piegat, A., Pluciński, M.: Computing with words with the use of inverse RDM models of membership functions. Int. J. Appl. Math. Comput. Sci. 25(3), 675–688 (2015) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Prokopowicz, P., Czerniak, J., Mikolajewski, D., Apiecionek, L., Slezak, D.: Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold KosińskStudies in Fuzziness and Soft Computing, vol. 356, 1st edn. Springer, Cham (2017)Google Scholar
  41. 41.
    Prokopowicz, P., Mikolajewski, D., Mikolajewska, E., Tyburek, K.: Modeling trends in the hierarchical fuzzy system for multi-criteria evaluation of medical data. In: Kacprzyk, J., Szmidt, E., Zadrozny, S., Atanassov, K.T., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017: Proceedings of EUSFLAT-2017 - The 10th Conference of the European Society for Fuzzy Logic and Technology, vol. 3. p. 207. Springer, Cham (2017)Google Scholar
  42. 42.
    Sameon, D., Shamsuddin, S., Sallehuddin, R., Zainal, A.: Compact classification of optimized Boolean, reasoning with Particle Swarm Optimization. Intell. Data Anal. 16, 915–931 (2012)CrossRefGoogle Scholar
  43. 43.
    Stachowiak, A., Dyczkowski, K.: A similarity measure with uncertainty for incompletely known fuzzy sets. In: Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 390–394 (2013)Google Scholar
  44. 44.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114, 505–518 (2000)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Vince, T., Lukac, P., Schweiner, D., Tomcikova, I., Mamchur, D.: Android application supporting developed web applications testing. In: 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, Ukraine, 15–17 November 2017, pp. 392–395 (2017)Google Scholar
  46. 46.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  47. 47.
    Zadeh, L.: Outline of new approach to the analysis of complex systems and decision process. IEEE Trans. Syst. Man Cybern. SMC-3, 28–44 (1973)Google Scholar
  48. 48.
    Zadrozny, S., Kacprzyk, J.: On the use of linguistic summaries for text categorization. In: Proceedings of IPMU, pp. 1373–1380 (2004)Google Scholar
  49. 49.
    Zarzycki, H., Czerniak, J.M., Dobrosielski, W.T.: Detecting Nasdaq composite index trends with OFNs. In: Prokopowicz, P., Czerniak, J.M., Mikolajewski, D., Apiecionek, L., Slezak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. A Tribute to Professor Witold Kosinski. Studies in Fuzziness and Soft Computing, chap. 16, pp. 207–222, Springer, Cham (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Hubert Zarzycki
    • 2
  • Łukasz Apiecionek
    • 1
  • Jacek M. Czerniak
    • 1
    Email author
  • Dawid Ewald
    • 1
  1. 1.Department of Computer ScienceCasimir the Great University in BydgoszczBydgoszczPoland
  2. 2.University of Information Technology and Management CopernicusWroclawPoland

Personalised recommendations