Advertisement

Laboratory Prototype of Hybrid Systems for Waste Weighing as a New Benchmark for Optimizing Metaheuristics

  • Jacek M. CzerniakEmail author
  • Dawid Ewald
  • Łukasz Apiecionek
  • Henryk Kruszyński
  • Robert Palka
Conference paper
  • 10 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1081)

Abstract

The authors present a dynamic system of waste weighing, management and monitoring using an innovative hybrid measurement method. This is a key part of the planned Waste Management System (WMS) operating on the computing cloud. A simulation project of the Laboratory prototype of Hybrid systems for waste weighing is shown in this paper. It has been introduced as a new benchmark for optimizing metaheuristics. The results of the Laboratory prototype simulation project analysis stored in the form of a mathematical function were used to define the test task of optimization methods. The Swarm Intelligence group metaheuristics was used in the study [1]. The results have proved to be promising, as the new benchmark may already be used. Its development will be parallel to building a production prototype of Hybrid systems for waste weighing.

Notes

Acknowledgement

Project co-financed by the Polish National Center for Research and Development (NCBiR) under the “Smart Development” Operational Program (POIR), the agreement number POIR.01.01.01-00-0078/17-00.

References

  1. 1.
    Apiecionek, L., Zarzycki, H., Czerniak, J.M., Dobrosielski, W., Ewald, D.: The cellular automata theory with fuzzy numbers in simulation of real fires in buildings. In: Advances in Intelligent Systems and Computing, vol. 559. Springer, Cham (2018)Google Scholar
  2. 2.
    Bucko, R., Vince, T., Molnar, J., Dziak, J., Gladyr, A.: Safety system for intelligent building. In: 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, 15–17 November 2017, pp. 252–255 (2017)Google Scholar
  3. 3.
    Czerniak, J., Ewald, D., Macko, M., Smigielski, G., Tyszczuk, K.: Approach to the monitoring of energy consumption in eco-grinder based on ABC optimization. In: Beyond Databases, Architectures And Structures, BDAS 2015, vol. 521, 516–529 (2015)Google Scholar
  4. 4.
    Czerniak, J.M., Apiecionek, L., Zarzycki, H.: Application of ordered fuzzy numbers in a new OFNAnt algorithm based on ant colony optimization. In: Communications in Computer and Information Science, vol. 424, pp. 259–270. Springer (2014)Google Scholar
  5. 5.
    Czerniak, J.M., Zarzycki, H., Apiecionek, L., Palczewski, W., Kardasz, P.: A cellular automata-based simulation tool for real fire accident prevention. Math. Probl. Eng. 2018, 12 (2018)CrossRefGoogle Scholar
  6. 6.
    Czerniak, J.M., Zarzycki, H., Dobrosielski, W., Szczepanski, J.: New fuzzy numbers comparison operators in energy effectiveness simulation and modeling systems. In: Nolle, L., Burger, A., Tholen, C., Werner, J., Wellhausen, J. (eds.) European Council for Modeling and Simulation. ECMS 2018 Proceedings (2018)Google Scholar
  7. 7.
    Czerniak, J.M., Zarzycki, H.: Artificial Acari Optimization as a new strategy for global optimization of multimodal functions. J. Comput. Sci. 22, 209–227 (2017)CrossRefGoogle Scholar
  8. 8.
    Czerniak, J.M., Zarzycki, H., Ewald, D.: AAO as a new strategy in modeling and simulation of constructional problems optimization. Simul. Model. Pract. Theory 76, 22–33 (2017). http://www.sciencedirect.com/science/article/pii/S1569190X17300709
  9. 9.
    Czerniak, J., Macko, M., Ewald, D.: The CutMAG as a new hybrid method for multi-edge grinder design optimization. In: Advances in Intelligent Systems and Computing, vol. 401, pp. 327–337 (2016)Google Scholar
  10. 10.
    Czerniak, J., Smigielski, G., Ewald, D., Paprzycki, M.: New proposed implementation of ABC method to optimization of water capsule flight. In: Proceedings of the Federated Conference on Computer Science and Information Systems. ACSIS, vol. 5, pp. 489–493. IEEE Digital Library (2015)Google Scholar
  11. 11.
    Dobrosielski, W., Czerniak, J.M., Szczepanski, J., Zarzycki, H.: Triangular expanding, a new defuzzification method on ordered fuzzy numbers. In: Advances in Intelligent Systems and Computing, vol. 642, pp. 605–619. Springer (2017)Google Scholar
  12. 12.
    Dobrosielski, W., Szczepanski, J., Zarzycki, H.: A proposal for a method of defuzzification based on the golden ratio - GR. In: Advances in Intelligent Systems and Computing, vol. 401, pp. 75–84. Springer (2016)Google Scholar
  13. 13.
    Dyczkowski, K.: A less cumulative algorithm of mining linguistic browsing patterns in the world wide web (2007)Google Scholar
  14. 14.
    Ewald, D., Czerniak, J.M., Zarzycki, H.: Approach to solve a criteria problem of the ABC algorithm used to the WBDP multicriteria optimization. In: Advances in Intelligent Systems and Computing, pp. 129–137. Springer (2015)Google Scholar
  15. 15.
    Ewald, D., Czerniak, J.M., Zarzycki, H.: OFNBee method used for solving a set of benchmarks. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017, IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol. 642 (2018)Google Scholar
  16. 16.
    Jacko, P., Kovac, D., Bucko, R., Vince, T., Kravets, O.: The parallel data processing by Nucleo board with STM32 microcontrollers. In: 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, 15–17 November 2017, pp. 264–267 (2017)Google Scholar
  17. 17.
    Kacprzyk, J., Wilbik, A.: Using fuzzy linguistic summaries for the comparison of time series: an application to the analysis of investment fund quotations. In: IFSA/EUSFLAT Conference, pp. 1321–1326 (2009)Google Scholar
  18. 18.
    Kovac, D., Beres, M., Kovacova, I., Vince, T., Molnar, J., Dziak, J., Jacko, P., Bucko, R., Tomcikova, I., Schweiner, D.: Circuit elements influence on optimal number of phases of DC/DC buck converter. Electron. Lett. 54(7), 435–436 (2018)CrossRefGoogle Scholar
  19. 19.
    Kovac, D., Kovacova, I., Vince, T., Molnar, J., Perdulak, J., Beres, M., Dziak, J.: An automated measuring laboratory (VMLab) in education. Int. J. Eng. Educ. 32(5, B, SI), 2250–2259 (2016)Google Scholar
  20. 20.
    Lebiediewa, S., Zarzycki, H., Dobrosielski, W.: A new approach to the equivalence of relational and object-oriented databases. In: Atanassov, K., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. Advances in Intelligent Systems and Computing, vol. 401 (2016)Google Scholar
  21. 21.
    Macko, M., Flizikowski, J.: The method of the selection of comminution design for non-brittle materials. In: AIChE Annual Meeting, Conference Proceedings (2010)Google Scholar
  22. 22.
    Macko, M., Szczepanski, Z., Mikolajewski, D., Mikolajewska, E., Listopadzki, S.: The method of artificial organs fabrication based on reverse engineering in medicine, pp. 353–365 (2017)Google Scholar
  23. 23.
    Marszalek, A., Burczynski, T.: Modeling and forecasting financial time series with ordered fuzzy candlesticks. Inf. Sci. 273, 144–155 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mikolajewska, E., Mikolajewski, D.: Exoskeletons in neurological diseases - current and potential future applications. Adv. Clin. Exp. Med. 20(2), 227–233 (2011)Google Scholar
  25. 25.
    Piegat, A.: A new definition of the fuzzy set. J. Appl. Math. Comput. Sci. 15(1), 125–140 (2005)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Piegat, A., Pluciński, M.: Computing with words with the use of inverse rdm models of membership functions. Int. J. Appl. Math. Comput. Sci. 25(3), 675–688 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Prokopowicz, P., Czerniak, J., Mikolajewski, D., Apiecionek, L., Slezak, D.: Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosińsk. Studies in Fuzziness and Soft Computing, vol. 356, 1st edn. Springer, Cham (2017)Google Scholar
  28. 28.
    Prokopowicz, P., Mikolajewski, D., Mikolajewska, E., Kotlarz, P.: Fuzzy system as an assessment tool for analysis of the health-related quality of life for the people after stroke. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing: Proceedings of the 16th International Conference, ICAISC 2017, Zakopane, Poland, 11–15 June 2017, Part I, p. 710. Springer, Cham (2017)Google Scholar
  29. 29.
    Prokopowicz, P., Mikolajewski, D., Mikolajewska, E., Tyburek, K.: Modeling trends in the hierarchical fuzzy system for multi-criteria evaluation of medical data. In: Kacprzyk, J., Szmidt, E., Zadrozny, S., Atanassov, K.T., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017: Proceedings of EUSFLAT-2017 - The 10th Conference of the European Society for Fuzzy Logic and Technology, vol. 3. p. 207. Springer, Cham (2017)Google Scholar
  30. 30.
    Radoičić, G., Jovanović, M., Arsić, M.: Experience with an on-board weighing system solution for heavy vehicles. ETRI J. 38, 787–797 (2016)Google Scholar
  31. 31.
    Rojek, I.: Technological process planning by the use of neural networks. Artif. Intell. Eng. Des. 31(1), 1–15 (2017). (Analysis and Manufacturing)Google Scholar
  32. 32.
    Smigielski, G., Dygdala, R., Zarzycki, H., Lewandowski, D.: Real-time system of delivering water-capsule for firefighting. In: Advances in Intelligent Systems and Computing, vol. 534, pp. 102–111 (2016)Google Scholar
  33. 33.
    Smigielski, G., Toczek, W., Dygdała, R., Stefanski, K.: Metrological analysis of precision of the system of delivering a water capsule for explosive production of water aerosol. Metrol. Meas. Syst. 23(1), 47–58 (2016)CrossRefGoogle Scholar
  34. 34.
    Stachowiak, A., Dyczkowski, K.: A similarity measure with uncertainty for incompletely known fuzzy sets. In: Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 390–394 (2013)Google Scholar
  35. 35.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114, 505–518 (2000)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Vince, T., Lukac, P., Schweiner, D., Tomcikova, I., Mamchur, D.: Android application supporting developed web applications testing. In: 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, 15–17 November 2017, pp. 392–395 (2017)Google Scholar
  37. 37.
    Zadrozny, S., Kacprzyk, J.: On the use of linguistic summaries for text categorization. In: Proceedings of IPMU, pp. 1373–1380 (2004)Google Scholar
  38. 38.
    Zarzycki, H., Czerniak, J.M., Dobrosielski, W.: Detecting Nasdaq composite index trends with OFNs. In: Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Slezak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers. Studies in Fuzziness and Soft Computing, vol. 356 (2017)Google Scholar
  39. 39.
    Zarzycki, H., Czerniak, J.M., Lakomski, D., Kardasz, P.: Performance comparison of CRM systems dedicated to reporting failures to it department. In: Madeyski, L., Śmiałek, M., Hnatkowska, B., Huzar, Z. (eds.) Software Engineering: Challenges and Solutions. Advances in Intelligent Systems and Computing, vol. 504 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Jacek M. Czerniak
    • 1
    • 2
    Email author
  • Dawid Ewald
    • 1
    • 2
  • Łukasz Apiecionek
    • 1
    • 2
  • Henryk Kruszyński
    • 2
  • Robert Palka
    • 2
  1. 1.Institute of TechnologyCasimir the Great University in BydgoszczBydgoszczPoland
  2. 2.Teldat Sp. z o.o sp.k.BydgoszczPoland

Personalised recommendations