Skip to main content

Development of Linear Servo Hydraulic Drive for Material Testing

  • Conference paper
  • First Online:
New Technologies, Development and Application III (NT 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 128))

  • 1328 Accesses

Abstract

Material testing devices are used in laboratory and industrial environments for testing and research in fracture mechanics and are typically operated by servo-hydraulic or servo-pneumatic actuators. They contain an increasing number of electronic and microprocessor-controlled components, with which they achieve appropriate dynamics and the ability to store and process signals.

The paper presents the development, implementation and operation of a flexible device for testing the dynamic strength of materials based on linear electro-hydraulic servo drive with closed loop force control. To control the components, a Beckhoff multi-core controller is used, which simultaneously runs a control program with real time force control, as well as a human-machine interface in the Windows environment. The presented device is capable of achieving forces up to 40 kN at test speeds up to 20 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pao, P.S., Gill, S.J., Feng, C.R.: On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy. Scripta Mater. 43(5), 391–396 (2000)

    Article  Google Scholar 

  2. Weißgraeber, P., Felger, J., Geipel, D., Becker, W.: Cracks at elliptical holes: stress intensity factor and finite fracture mechanics solution. Eur. J. Mech. A/Solids 55, 192–198 (2016)

    Article  Google Scholar 

  3. DuQuesnay, D.L., Underhill, P.R., Britt, H.J.: Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading. Int. J. Fatigue 25(5), 371–377 (2003)

    Article  Google Scholar 

  4. Cui, W.: A state-of-the-art review on fatigue life prediction methods for metal structures. J. Mar. Sci. Technol. 7(1), 43–56 (2002)

    Article  Google Scholar 

  5. Doquet, V., De Greef, V.: Dwell-fatigue of a titanium alloy at room temperature under uniaxial or biaxial tension. Int. J. Fatigue 38(2012), 118–129 (2011)

    Google Scholar 

  6. Marcelo, F., Bustos, P.: Design and construction of a torsional fatigue testing machine operated by inertial load. Dyna 172, 46–55 (2012)

    Google Scholar 

  7. Petersen, D., Link, R., Fletcher, D., Beynon, J.: Development of a machine for closely controlled rolling contact Fatigue and wear testing. J. Test. Eval. 28(4), 267–275 (2000)

    Article  Google Scholar 

  8. Feng, M., Li, M.: Development of a computerized electrodynamic resonant fatigue test machine and its applications to automotive components. In: SAE Technical Paper Series (2010)

    Google Scholar 

  9. Bathias, C.: Piezoelectric fatigue testing machines and devices. Int. J. Fatigue 28(11), 1438–1445 (2006)

    Article  Google Scholar 

  10. Ambriz, J.L.A., Almaraz, G.M.D., Julio, C., Juarez, V., Gomez, E.C., Zuñiga, I.F.: Design and construction of a torsion fatigue machine : torsion fatigue tests on two industrial aluminum alloys, vol. 79, (2017). ISSN 1454-2358

    Google Scholar 

  11. Zuñiga, G.M., Ishvari, T., Dominguez Almaraz, F., Guzman Tapia, M., Avila Ambriz, J.L.: Controlled Pre-Corrosion Attack and Ultrasonic Fatigue Endurance of Titanium Alloy Ti – 6Al – 4V. Lat. Am. J. Solids Struct. 14(3), 512–527 (2017)

    Article  Google Scholar 

  12. Ouarabi, M., Mora, R.P., Bathias, C.: Very high cycle fatigue strength and crack growth of thin steel sheets, vol. 36, pp. 112–118 (2016)

    Google Scholar 

  13. Štefane, M.: Implementacija in prvi zagon elektrohidravlične linearne servoosi. Univerza v Mariboru, Fakulteta za strojništvo (2017)

    Google Scholar 

  14. Jurgec, T.: Vpliv hidravličnega cevovoda na delovanje linearne hidravlične servoosi. Univerza v Mariboru, Fakulteta za strojništvo (2017)

    Google Scholar 

  15. Jerebic, L.: Regulacija sile na linearni hidravlični servoosi. Univerza v Mariboru, Fakulteta za strojništvo (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vito Tič or Darko Lovrec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tič, V., Lovrec, D. (2020). Development of Linear Servo Hydraulic Drive for Material Testing. In: Karabegović, I. (eds) New Technologies, Development and Application III. NT 2020. Lecture Notes in Networks and Systems, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-46817-0_12

Download citation

Publish with us

Policies and ethics