Skip to main content

Benchmarking of Classification Algorithms for Psychological Diagnosis

  • Conference paper
  • First Online:
Smart Technologies, Systems and Applications (SmartTech-IC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1154))

  • 400 Accesses

Abstract

Generating a clinical diagnosis of a mental disorder is a complex process due to the variety of biological factors that affect this type of condition, so it is necessary that a professional performs a deep evaluation in order to identify and determine the type of disorder that affects the patient. This paper proposes the implementation and comparison of five machine learning algorithms (ML) to generate automatic diagnoses of mental disorders, through the set of symptoms present in a patient. The algorithms selected for comparison are: Support Vector Machine, Logistic Regression, Random Forest, Bayesian Networks, k-Nearest Neighbors (k-NN). The evaluation metrics used on the benchmarked were precision, accuracy, recall, error rate and also we analyzed the ROC curves and the AUC values. The general results show that the Logistic Regression algorithm obtained a better performance with 70.82% of accuracy. The Support Vector Machine model, on the other hand, showed a low performance reaching only 42.99% accuracy.

This work was supported by IDEIAGEOCA Research Group of the Universidad Politécnica Salesiana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belgiu, M., Drăguţ, L.: Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31 (2016)

    Article  Google Scholar 

  2. Bijalwan, V., Kumar, V., Kumari, P., Pascual, J.: KNN based machine learning approach for text and document mining. Int. J. Database Theory Appl. 7(1), 61–70 (2014)

    Article  Google Scholar 

  3. Bouzembrak, Y., Camenzuli, L., Janssen, E., Van der Fels-Klerx, H.: Application of Bayesian networks in the development of herbs and spices sampling monitoring system. Food Control 83, 38–44 (2018)

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Bzdok, D., Meyer-Lindenberg, A.: Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3(3), 223–230 (2018)

    Google Scholar 

  6. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 161–168. ACM (2006)

    Google Scholar 

  7. Chávez-Oleas, H., Samaniego, N., Aguilar, E.: Manual de atención primaria en salud mental. Ministerio de Salud Pública (2019)

    Google Scholar 

  8. Crippa, A., et al.: Use of machine learning to identify children with autism and their motor abnormalities. J. Autism Dev. Disord. 45(7), 2146–2156 (2015)

    Article  Google Scholar 

  9. De la Hoz Manotas, A.K., Martínez-Palacio, U.J., Mendoza-Palechor, F.E.: Técnicas de ml en medicina cardiovascular. Memorias 11(20), 41–46 (2013)

    Google Scholar 

  10. Dosen, A., Gardner, W., Griffiths, D., King, R., Lapoint, A.: Evaluación, diagnostivo, tratamiento y servicios de apoyo para personas con discapacidad intelectual y problemas de conducta (2010)

    Google Scholar 

  11. FEAFES: Salud Mental y Medios de Comunicación - Guía de Estilo

    Google Scholar 

  12. Ferri, C., Hernández-Orallo, J., Flach, P.A.: A coherent interpretation of AUC as a measure of aggregated classification performance. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 657–664 (2011)

    Google Scholar 

  13. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62

    Chapter  Google Scholar 

  14. Hanai, T., et al.: Prognostic models in patients with non-small-cell lung cancer using artificial neural networks in comparison with logistic regression. Cancer Sci. 94(5), 473–477 (2003)

    Article  Google Scholar 

  15. Hossin, M., Sulaiman, M.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5(2), 1 (2015)

    Article  Google Scholar 

  16. Hyman, S.E.: Can neuroscience be integrated into the DSM-V? Nat. Rev. Neurosci. 8(9), 725 (2007)

    Article  Google Scholar 

  17. Kessler, R.C., et al.: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol. Psychiatry 21(10), 1366 (2016)

    Article  Google Scholar 

  18. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  19. Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in logistic regression. J. R. Stat. Soc. Ser. C (Appl. Stat.) 41(1), 191–201 (1992)

    MATH  Google Scholar 

  20. Medina, O., Maybee, A.: Detección de depresión a través de análisis textual utilizando aprendizaje automático (2017)

    Google Scholar 

  21. Morillo, P., Ortega, H., Chauca, D., Proaño, J., Vallejo-Huanga, D., Cazares, M.: Psycho web: a machine learning platform for the diagnosis and classification of mental disorders. In: Ayaz, H. (ed.) AHFE 2019. AISC, vol. 953, pp. 399–410. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-20473-0_39

    Chapter  Google Scholar 

  22. Oniśko, A., Druzdzel, M.J., Wasyluk, H.: Learning Bayesian network parameters from small data sets: application of noisy-or gates. Int. J. Approx. Reason. 27(2), 165–182 (2001)

    Article  MATH  Google Scholar 

  23. Orru, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012)

    Article  Google Scholar 

  24. Patel, M.J., Khalaf, A., Aizenstein, H.J.: Studying depression using imaging and machine learning methods. NeuroImage Clin. 10, 115–123 (2016)

    Article  Google Scholar 

  25. Salvador, R., et al.: Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis. PLoS One 12(4), e0175683 (2017)

    Article  Google Scholar 

  26. Schaffer, C.: Selecting a classification method by cross-validation. Mach. Learn. 13(1), 135–143 (1993)

    MathSciNet  Google Scholar 

  27. Schnack, H.G., et al.: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage 84, 299–306 (2014)

    Article  Google Scholar 

  28. Stephan, K.E., et al.: Computational neuroimaging strategies for single patient predictions. Neuroimage 145, 180–199 (2017)

    Article  Google Scholar 

  29. Steyerberg, E.W., Harrell Jr., F.E., Borsboom, G.J., Eijkemans, M., Vergouwe, Y., Habbema, J.D.F.: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 54(8), 774–781 (2001)

    Article  Google Scholar 

  30. Svetnik, V., Liaw, A., Tong, C., Wang, T.: Application of Breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 334–343. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25966-4_33

    Chapter  Google Scholar 

  31. Sỳkora, M., Markova, J., Diamantidis, D.: Bayesian network application for the risk assessment of existing energy production units. Reliab. Eng. Syst. Saf. 169, 312–320 (2018)

    Article  Google Scholar 

  32. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49(11), 1225–1231 (1996)

    Article  Google Scholar 

  33. Vidal, C.R.: Clasificación en paidoqsiquiatría. Conceptos y enfoques. Sistemas de clasificación: DSM.IV, ICD.10

    Google Scholar 

  34. WHO: Campaign for world health day (2017). https://www.who.int/campaigns/world-health-day/2017/en/

  35. Wu, M.-J., et al.: Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. Neuroimage 145, 254–264 (2017)

    Article  Google Scholar 

  36. Zelaya, M.G.R., Valladares, F.A.: Caracterización del trauma abdominal en pacientes geriátricos atendidos en el hospital escuela, tegucigalpa, 2000–2002. Urbana 50, 89–92 (2003)

    Google Scholar 

  37. Zhou, X., Liu, K.-Y., Wong, S.T.: Cancer classification and prediction using logistic regression with Bayesian gene selection. J. Biomed. Inform. 37(4), 249–259 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Morillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Llano, J., Ramirez, V., Morillo, P. (2020). Benchmarking of Classification Algorithms for Psychological Diagnosis. In: Narváez, F., Vallejo, D., Morillo, P., Proaño, J. (eds) Smart Technologies, Systems and Applications. SmartTech-IC 2019. Communications in Computer and Information Science, vol 1154. Springer, Cham. https://doi.org/10.1007/978-3-030-46785-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46785-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46784-5

  • Online ISBN: 978-3-030-46785-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics