Skip to main content

Virtual Worlds: The Role of Simulation in Ecology

  • Chapter
  • First Online:
Complexity in Landscape Ecology

Part of the book series: Landscape Series ((LAEC,volume 22))

Abstract

Simulation is an essential tool for understanding complexity in ecology. Virtual experiments, using simulation models, make it possible to cope with the large time and spatial scales of many ecological processes. This need has given rise to the field of Artificial Life, as well as growing use of virtual reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Fig. 5.10, also 3.8, and 4.2.

References

  1. Ackland GJ (2004) Maximization principles daisyworld. J Theor Biol 227(1):121–128

    Article  CAS  Google Scholar 

  2. Ackland GJ, Clark MA, Lenton TM (2003) Catastrophic desert formation in daisyworld. J Theor Biol 223(1):39–44

    Article  Google Scholar 

  3. Adami C (1994) Learning complexity in genetic auto-adaptive systems. Physica D: Nonlinear Phenomena 80(1–2):154–170

    Google Scholar 

  4. Adami C, Brown CT, Haggerty MR (1995) Abundance-distributions in the artificial life stochastic models: “age and area” revisited. In: Morán F, Moreno A, Merelo JJ, Chacón P (eds) Advances in artificial life, vol 3. Springer, Berlin, pp 503–514

    Chapter  Google Scholar 

  5. Adami C, Brown CT, Kellogg W (1994) Evolutionary learning in the 2D artificial life system ‘Avida’. In: Brooks RA, Maes P (eds) Artificial Life IV. MIT Press, Cambridge, pp 377–381

    Google Scholar 

  6. Berry K, Buckley DJ, Ulbricht C (1998) Visualize realistic landscapes: 3-D modeling helps GIS users envision natural resources. GeoWorld 11(8):42–47

    Google Scholar 

  7. Boerlijst MC, Hogeweg P (1991) Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physica D: Nonlinear Phenomena 48(1):17–28

    Article  Google Scholar 

  8. Chandler T (2009) Animations of Angkor. Google Arts and Culture. https://artsandculture.google.com/entity/angkor/m0mcq2?categoryId=place. Accessed 21 Dec 2019

  9. Cole HSD, Freeman C, Jahoda M, Pavitt KLR (eds) (1973) Thinking about the future – a critique of the limits to growth. Chatto & Windus, London

    Google Scholar 

  10. Dodge M (1999) Explorations in Alpha World: the geography of 3-D virtual worlds on the Internet. iVirtual Reality in Geography. RGS–IBG annual conference Leicester, 4–7th January 1999

    Google Scholar 

  11. Eigen M, Schuster P (1979) The hypercycle: a principle of natural self–organization. Springer, Berlin

    Book  Google Scholar 

  12. Fall A, Fall J (2001) A domain-specific language for models of landscape dynamics. Ecol Model 141(1–3):1–18

    Article  Google Scholar 

  13. Forrester JW (1961) Industrial dynamics. MIT Press, Cambridge

    Google Scholar 

  14. Huxor A (1997) The role of virtual world design in collaborative working. In: Proceedings of the 1997 IEEE conference on Information Visualisation, pp 246–251

    Google Scholar 

  15. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  16. Kirchner JW (2002) The Gaia hypothesis: fact theory and wishful thinking. Clim Chang 52(4):391–408

    Article  Google Scholar 

  17. Kleidon A (2004) Beyond Gaia: thermodynamics of life and Earth system functioning. Clim Chang 66(3):271–319

    Article  Google Scholar 

  18. Lenton TM, Lovelock JE (2000) Daisyworld is Darwinian: constraints on adaptation are important for planetary self-regulation. J Theor Biol 206(1):109–114

    Article  CAS  Google Scholar 

  19. Lenton TM, van Oijen M (2002) Gaia as a complex adaptive system. Philos Trans R Soc B Biol Sci 357(1421):683–695

    Article  Google Scholar 

  20. Lovelock JE (1989) The ages of Gaia. Oxford University Press, Oxford

    Google Scholar 

  21. Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26(1–2):2–10

    CAS  Google Scholar 

  22. Meadows DH, Meadows DL, Randers J, Behrens WW (1972) The limits to growth. Universe Books, New York

    Google Scholar 

  23. Minar N, Burkhart R, Langton C, Askenazi M (1996) The swarm simulation system: a toolkit for building multi-agent simulations. Working paper 96-06-042, Santa Fe Institute, Santa Fe, NM

    Google Scholar 

  24. Pech R, McIlroy JC, Clough MF, Green DG (1992) A microcomputer model for predicting the spread and control of foot and mouth disease in feral pigs. In: Borrecco JE, Marsh RE (eds) Proceedings of the 15th vertebrate pest conference. University of California, Davis, pp 360–364

    Google Scholar 

  25. Ray T (1991) An approach to the synthesis of life. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison-Wesley, New York, pp 41–91

    Google Scholar 

  26. Rymaszewski M, Au WJ, Wallace M, Winters C, Ondrejka C, Batstone-Cunningham B (2007) Second life: the official guide. Wiley, Hoboken

    Google Scholar 

  27. Staley M (2002) Darwinian selection leads to Gaia. J Theor Biol 218(1):35–46

    Article  Google Scholar 

  28. Sugimoto T (2002) Darwinian evolution does not rule out the Gaia hypothesis. J Theor Biol 218(4):447–455

    Article  Google Scholar 

  29. Turner GM (2008) A comparison of the limits to growth with 30 years of reality. Glob Environ Chang 18(3):397–411

    Article  Google Scholar 

  30. West SA, Griffin AS, Gardner A (2007) Social semantics: how useful has group selection been? J Evol Biol 21:374–385. https://doi.org/10.1111/j.1420-9101.2007.01458.x

    Article  Google Scholar 

  31. Wilensky U, Rand W (2015) An introduction to agent-based modeling: modeling natural social and engineered complex systems with NetLogo. MIT Press, Cambridge

    Google Scholar 

  32. Wilke CO, Adami C (2002) The biology of digital organisms. Trends Ecol Evol 17:528–532

    Article  Google Scholar 

  33. Wood AJ, Ackland GJ, Dyke JG, Williams HP, Lenton TM (2008) Daisyworld: a review. Rev Geophys 46(1):1–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Green, D.G., Klomp, N.I., Rimmington, G., Sadedin, S. (2020). Virtual Worlds: The Role of Simulation in Ecology. In: Complexity in Landscape Ecology. Landscape Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-46773-9_9

Download citation

Publish with us

Policies and ethics