Skip to main content

The Imbalance of Nature … Feedback and Stability in Ecosystems

  • Chapter
  • First Online:
Complexity in Landscape Ecology

Part of the book series: Landscape Series ((LAEC,volume 22))

  • 627 Accesses

Abstract

Ecosystems are dynamic and apparent stability may be an illusion of scale. Some ecosystems are subject to chronic disturbance. In dynamic systems, equilibrium is difficult to achieve and maintain. Systems often exhibit sensitivity to initial conditions and chaotic behaviour. Negative feedback promotes stability. Positive feedback is destabilizing, but also promotes the emergence of large-scale order in complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some trees are more than 2000 years old.

  2. 2.

    We will explore food webs further in Chap. 7.

  3. 3.

    In the exponential model the rate of increase in population size at any time t is proportional to its size Nt. This means that Nt can be calculated from the initial size of the population No, the intervening time t and the rate of growth r, using the formula: Nt = No ert.

  4. 4.

    The equation for logistic growth is:

    $$ X\left(t+1\right)= rX(t)\left(1-X(t)/K\right) $$

    where X(t) is the population size at time t, r is the rate of population growth, and K is the carrying capacity.

  5. 5.

    In the case of discrete logistic growth x’ = Lx(1 − x), for example, the period is 1 (i.e. an equilibrium point) for 2 < L < 3, but in the interval 3 < L < 4, the period doubles to produce limit cycles of period 2, 4, 8, 16, ... until the period becomes effectively infinite at the point L ~ = 3.93 (Fig. 5.10).

References

  1. Benincà E, Ballantine B, Ellner SP, Huisman J (2015) Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc Natl Acad Sci 112:6389–6394

    Article  Google Scholar 

  2. Bjørnstad ON (2015) Nonlinearity and chaos in ecological dynamics revisited. Proc Natl Acad Sci 112(20):6252–6253

    Article  Google Scholar 

  3. Bormann FH, Likens GE (1979) Pattern and process in a forested watershed. Springer Science & Business Media, New York

    Book  Google Scholar 

  4. Brown JH, Lomolino MV (2000) Concluding remarks: historical perspective and the future of island biogeography theory. Glob Ecol Biogeogr 9(1):87–92

    Article  Google Scholar 

  5. Chang CC, Turner BL (2019) Ecological succession in a changing world. J Ecol 107(2):503–509

    Article  Google Scholar 

  6. Costantino RF, Desharnais RA, Cushing JM, Dennis B (1997) Chaotic dynamics in an insect population. Science 275(5298):389–391

    Article  CAS  Google Scholar 

  7. Crawley MJ (1990) The population dynamics of plants. Philos Trans R Soc, B 330(1257):125–140

    Article  Google Scholar 

  8. Davis MB (1986) Pleistocene biogeography of temperate deciduous forests. Geosci Man 13:13–26

    Google Scholar 

  9. Elton CS (1930) Animal ecology and evolution. Oxford University Press, New York

    Google Scholar 

  10. Feigenbaum MJ (1978) Quantitative universality for a class of nonlinear transformations. J Stat Phys 19(1):25–52

    Article  Google Scholar 

  11. Ferriere R, Gatto M (1993) Chaotic population dynamics can result from natural selection. Proc R Soc Lond Ser B Biol Sci 251(1330):33–38

    Article  CAS  Google Scholar 

  12. Fox BJ, Fox MD (2000) Factors determining mammal species richness on habitat islands and isolates: habitat diversity disturbance species interactions and guild assembly rules. Glob Ecol Biogeogr Lett 9:19–37

    Article  Google Scholar 

  13. Green DG (1982) Fire and stability in the postglacial forests of Southwest Nova Scotia. J Biogeogr 9(1):29–40

    Article  Google Scholar 

  14. He HS, Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80(1):81–99

    Article  Google Scholar 

  15. Heaney LR (2000) Dynamic disequilibrium: a long–term large–scale perspective on the equilibrium model of island biogeography. Glob Ecol Biogeogr 9(1):59–74

    Article  Google Scholar 

  16. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4(1):1–23

    Article  Google Scholar 

  17. Lomolino MV (2000) A call for a new paradigm of island biogeography. Glob Ecol Biogeogr 9(1):1–6

    Article  Google Scholar 

  18. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  19. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 26:459–467

    Article  Google Scholar 

  20. New TR (2015) Colonization, succession and conservation: the invertebrates of Anak Krakatau, Indonesia, and contrast with Surtsey. Surtsey Res 13:31–39

    Google Scholar 

  21. Noble IR, Slatyer RO (1981) Concepts and models of succession in vascular plant communities subject to recurrent fire. In: Gill AM, Groves RH, Noble IR (eds) Conference on fire and the Australian biota, 9 Oct 1978. Australian Academy of Science, Canberra, pp 311–335

    Google Scholar 

  22. Phillips JD (1993) Biophysical feedbacks and the risks of desertification. Ann Assoc Am Geogr 83(4):630–640

    Article  Google Scholar 

  23. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307(5949):321–326

    Article  Google Scholar 

  24. Poon C, Barahona M (2001) Titration of chaos with added noise. PNAS 98(13):7107–7112

    Article  CAS  Google Scholar 

  25. Rees M, Kelly D, Bjoernstad ON (2002) Snow tussocks chaos and the evolution of mast seeding. Am Nat 160(1):44–59

    Article  Google Scholar 

  26. Romme WH, Turner MG, Wallace LL, Walker JS (1997) Aspen, elk and fire in northern Yellowstone National Park. Ecology 76(7):2097–2106

    Article  Google Scholar 

  27. Thornton IWB (1996) Krakatau the destruction and reassembly of an island ecosystem. Harvard University Press, Cambridge

    Google Scholar 

  28. Tregonning K, Roberts A (1979) Complex systems which evolve towards homeostasis. Nature 281(5732):563–564

    Article  Google Scholar 

  29. Turner MG, Dale VH, Everham EH III (1997a) Fires, hurricanes and volcanoes. Bioscience 47(11):758–768

    Article  Google Scholar 

  30. Turner MG, Romme WH, Gardner RH, Hargrove WW (1997b) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol Monogr 67(4):411–433

    Article  Google Scholar 

  31. Usher MB (1987) Effects of fragmentation on communities and populations: a review with applications to wildlife conservation. In: Saunders DA, Arnold GW, Burbidge AA, Hopkins AJM (eds) Nature conservation: the role of remnants of native vegetation. Surrey Australia, Beatty & Sons, pp 103–121

    Google Scholar 

  32. Whittaker RJ (1998) Island biogeography: ecology evolution and conservation. Oxford University Press, Oxford

    Google Scholar 

  33. Whittaker RJ (2000) Scale succession and complexity in island biogeography: are we asking the right questions? Glob Ecol Biogeogr Lett 9:75–85

    Article  Google Scholar 

  34. Wilson EO (1992) The diversity of life. Penguin, London

    Google Scholar 

  35. Winchester S (2003) Krakatoa; the day the world exploded: august 27 1883. Harper-Collins, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Green, D.G., Klomp, N.I., Rimmington, G., Sadedin, S. (2020). The Imbalance of Nature … Feedback and Stability in Ecosystems. In: Complexity in Landscape Ecology. Landscape Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-46773-9_5

Download citation

Publish with us

Policies and ethics