Skip to main content

Allen’s Interval Algebra Makes the Difference

  • Conference paper
  • First Online:
Declarative Programming and Knowledge Management (INAP 2019, WLP 2019, WFLP 2019)

Abstract

Allen’s Interval Algebra constitutes a framework for reasoning about temporal information in a qualitative manner. In particular, it uses intervals, i.e., pairs of endpoints, on the timeline to represent entities corresponding to actions, events, or tasks, and binary relations such as precedes and overlaps to encode the possible configurations between those entities. Allen’s calculus has found its way in many academic and industrial applications that involve, most commonly, planning and scheduling, temporal databases, and healthcare. In this paper, we present a novel encoding of Interval Algebra using answer-set programming (ASP) extended by difference constraints, i.e., the fragment abbreviated as ASP(DL), and demonstrate its performance via a preliminary experimental evaluation. Although our ASP encoding is presented in the case of Allen’s calculus for the sake of clarity, we suggest that analogous encodings can be devised for other point-based calculi, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This distinguished variable z can be used as a name for 0 in other difference constraints. Then, e.g., \(x-z\le k\) and \(z-x\le -k\) express together that \(x=k\).

  2. 2.

    https://potassco.org/labs/clingodl/.

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)

    Article  Google Scholar 

  2. Allen, J.F.: Planning as temporal reasoning. In: KR (1991)

    Google Scholar 

  3. Allen, J.F., Koomen, J.A.G.M.: Planning using a temporal world model. In: IJCAI (1983)

    Google Scholar 

  4. Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci. U.S.A. 45, 1607–1620 (1959)

    Article  Google Scholar 

  5. Brenton, C., Faber, W., Batsakis, S.: Answer set programming for qualitative spatio-temporal reasoning: methods and experiments. In: ICLP (Technical Communications) (2016)

    Google Scholar 

  6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54, 92–103 (2011)

    Article  Google Scholar 

  7. Chen, C.X., Zaniolo, C.: Universal temporal data languages. In: DDLP (1998)

    Google Scholar 

  8. Denis, P., Muller, P.: Predicting globally-coherent temporal structures from texts via endpoint inference and graph decomposition. In: IJCAI (2011)

    Google Scholar 

  9. Dorn, J.: Dependable reactive event-oriented planning. Data Knowl. Eng. 16, 27–49 (1995)

    Article  Google Scholar 

  10. Dylla, F., et al.: A survey of qualitative spatial and temporal calculi: algebraic and computational properties. ACM Comput. Surv. 50, 7:1–7:39 (2017)

    Article  Google Scholar 

  11. Gantner, Z., Westphal, M., Wölfl, S.: GQR-A fast reasoner for binary qualitative constraint calculi. In: AAAI Workshop on Spatial and Temporal Reasoning (2008)

    Google Scholar 

  12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: ICLP (Technical Communications) (2016)

    Google Scholar 

  13. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40, 1108–1133 (1993)

    Article  MathSciNet  Google Scholar 

  14. Janhunen, T.: Cross-translating answer set programs using the ASPTOOLS collection. Künstliche Intelligenz 32, 183–184 (2018)

    Article  Google Scholar 

  15. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions to difference logic. In: LPNMR (2009)

    Google Scholar 

  16. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.: Clingo goes linear constraints over reals and integers. TPLP 17, 872–888 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Janhunen, T., Niemelä, I.: The answer set programming paradigm. AI Mag. 37, 13–24 (2016)

    Article  Google Scholar 

  18. Kostakis, O., Papapetrou, P.: On searching and indexing sequences of temporal intervals. Data Min. Knowl. Disc. 31(3), 809–850 (2017). https://doi.org/10.1007/s10618-016-0489-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J.J.: Qualitative spatial and temporal reasoning with answer set programming. In: ICTAI (2012)

    Google Scholar 

  20. Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley, Hoboken (2013)

    Book  Google Scholar 

  21. Ligozat, G., Renz, J.: What is a qualitative calculus? A general framework. In: PRICAI (2004)

    Google Scholar 

  22. Little, T.D.C., Ghafoor, A.: Interval-based conceptual models for time-dependent multimedia data. IEEE Trans. Knowl. Data Eng. 5, 551–563 (1993)

    Article  Google Scholar 

  23. Lu, R., Sadiq, S.W., Padmanabhan, V., Governatori, G.: Using a temporal constraint network for business process execution. In: ADC (2006)

    Google Scholar 

  24. Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)

    Article  MathSciNet  Google Scholar 

  25. Moskovitch, R., Shahar, Y.: Classification of multivariate time series via temporal abstraction and time intervals mining. Knowl. Inf. Syst. 45(1), 35–74 (2014). https://doi.org/10.1007/s10115-014-0784-5

    Article  Google Scholar 

  26. Mudrová, L., Hawes, N.: Task scheduling for mobile robots using interval algebra. In: ICRA (2015)

    Google Scholar 

  27. Nebel, B.: Solving hard qualitative temporal reasoning problems: evaluating the efficiency of using the ORD-Horn class. Constraints 1, 175–190 (1997)

    Article  MathSciNet  Google Scholar 

  28. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its application to difference logic. In: CAV (2005)

    Google Scholar 

  29. Pelavin, R.N., Allen, J.F.: A model for concurrent actions having temporal extent. In: AAAI (1987)

    Google Scholar 

  30. Sioutis, M., Alirezaie, M., Renoux, J., Loutfi, A.: Towards a synergy of qualitative spatio-temporal reasoning and smart environments for assisting the elderly at home. In: IJCAI Workshop on Qualitative Reasoning (2017)

    Google Scholar 

  31. Sioutis, M., Janhunen, T.: Towards leveraging backdoors in qualitative constraint networks. In: KI, pp. 308–315 (2019)

    Google Scholar 

  32. Snodgrass, R.T.: The temporal query language TQuel. ACM Trans. Database Syst. 12, 247–298 (1987)

    Article  Google Scholar 

  33. Song, F., Cohen, R.: The interpretation of temporal relations in narrative. In: IJCAI (1988)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the project Ethical AI for the Governance of Society (ETAIROS, grant #327352) funded by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomi Janhunen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janhunen, T., Sioutis, M. (2020). Allen’s Interval Algebra Makes the Difference. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds) Declarative Programming and Knowledge Management. INAP WLP WFLP 2019 2019 2019. Lecture Notes in Computer Science(), vol 12057. Springer, Cham. https://doi.org/10.1007/978-3-030-46714-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46714-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46713-5

  • Online ISBN: 978-3-030-46714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics