Skip to main content

Facets of the PIE Environment for Proving, Interpolating and Eliminating on the Basis of First-Order Logic

  • Conference paper
  • First Online:
Declarative Programming and Knowledge Management (INAP 2019, WLP 2019, WFLP 2019)

Abstract

PIE is a Prolog-embedded environment for automated reasoning on the basis of first-order logic. Its main focus is on formulas, as constituents of complex formalizations that are structured through formula macros, and as outputs of reasoning tasks such as second-order quantifier elimination and Craig interpolation. It supports a workflow based on documents that intersperse macro definitions, invocations of reasoners, and -formatted natural language text. Starting from various examples, the paper discusses features and application possibilities of PIE along with current limitations and issues for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The prefix of this and related predicates should suggest format.

  2. 2.

    Available at http://www.mettel-prover.org/scan/.

  3. 3.

    Prover9 and Mace4 were developed between 2005 and 2010 by William McCune. Their homepage is https://www.cs.unm.edu/~mccune/prover9/.

  4. 4.

    The standard Prolog negation operator is not suited to represent classical negation as it symbolizes , non-provability.

  5. 5.

    3-colorability, which is NP-complete, can be specified analogously. We consider here 2-colorability for brevity of the involved formulas.

  6. 6.

    SWI-Prolog can be configured to permit variable names as functors, which are read in as atoms with capitalized names. The macro processor of PIE compares them to actual variable names in the macro definition.

  7. 7.

    One color predicate can also be eliminated from an analogous specification of 3-colorability.

  8. 8.

    In certain configurations it can also print several different interpolants.

  9. 9.

    This is an example which involves an inference step with a constant that occurs only on the left side (\(\mathsf {a}\)) and a constant that occurs only on the right side (\(\mathsf {b}\)), which can not be handled by certain resolution-based interpolation systems. See [7, 30]. In this particular example, the order of the quantifications in the result is not relevant.

  10. 10.

    We actually encountered right side of the implication before in Sect. 4 as the weakest sufficient condition in the macro definition of \( explanation \).

  11. 11.

    Hypertableaux, either obtained from a hypertableau prover or obtained from a clausal tableau prover like CM by restructuring the tableau seem interesting as basis for interpolant extraction in query reformulation, as they allow to ensure that the interpolants are range restricted. Some related preliminary results are in [57].

References

  1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematischen Logik. Math. Ann. 110, 390–413 (1935)

    Article  MathSciNet  Google Scholar 

  2. Alassaf, R., Schmidt, R.: DLS-Forgetter: an implementation of the DLS forgetting calculus for first-order logic. In: GCAI 2019. EPiC, vol. 65, pp. 127–138 (2019)

    Google Scholar 

  3. Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem. Math. Ann. 86(3–4), 163–229 (1922)

    Article  MathSciNet  Google Scholar 

  4. Benedikt, M., Kostylev, E.V., Mogavero, F., Tsamoura, E.: Reformulating queries: theory and practice. In: IJCAI 2017, pp. 837–843. ijcai.org (2017)

    Google Scholar 

  5. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from Proofs: The Interpolation-Based Approach to Query Reformulation. Morgan & Claypool, San Rafael (2016)

    Google Scholar 

  6. Bibel, W.: Matings in matrices. Commun. ACM 26(11), 844–852 (1983)

    Article  MathSciNet  Google Scholar 

  7. Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving. J. Autom. Reason. 54(1), 69–97 (2015)

    Article  MathSciNet  Google Scholar 

  8. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Beyond quantifier-free interpolation in extensions of Presburger arithmetic. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 88–102. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_8

    Chapter  Google Scholar 

  9. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calculus for quantifier-free Presburger arithmetic. J. Autom. Reason. 47(4), 341–367 (2011)

    Article  MathSciNet  Google Scholar 

  10. Conradie, W.: On the strength and scope of DLS. J. Appl. Non-Classsical Logics 16(3–4), 279–296 (2006)

    Article  MathSciNet  Google Scholar 

  11. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic 22(3), 250–268 (1957)

    Google Scholar 

  12. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)

    Article  MathSciNet  Google Scholar 

  13. Delgrande, J.P.: A knowledge level account of forgetting. J. Artif. Intell. Res. 60, 1165–1213 (2017)

    Article  MathSciNet  Google Scholar 

  14. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited: a reduction algorithm. J. Autom. Reason. 18(3), 297–338 (1997)

    Article  MathSciNet  Google Scholar 

  15. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: IJCAI-01, pp. 145–151. Morgan Kaufmann (2001)

    Google Scholar 

  16. Eberhard, S., Hetzl, S., Weller, D.: Boolean unification with predicates. J. Logic Comput. 27(1), 109–128 (2017)

    Article  MathSciNet  Google Scholar 

  17. Engel, T.: Quantifier elimination in second-order predicate logic. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken (1996)

    Google Scholar 

  18. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-2360-3

  19. Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: KR 1992, pp. 425–435. Morgan Kaufmann (1992)

    Google Scholar 

  20. Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications. College Publications (2008)

    Google Scholar 

  21. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conservative extensions in description logics. In: KR 2006, pp. 187–197. AAAI Press (2006)

    Google Scholar 

  22. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: theory and practice. J. Artif. Intell. Res. 31(1), 273–318 (2008)

    Article  MathSciNet  Google Scholar 

  23. Gustafsson, J.: An implementation and optimization of an algorithm for reducing formulae in second-order logic. Technical report LiTH-MAT-R-96-04, Univ. Linköping (1996)

    Google Scholar 

  24. Hoder, K., Holzer, A., Kovács, L., Voronkov, A.: Vinter: a Vampire-based tool for interpolation. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 148–156. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2_11

    Chapter  Google Scholar 

  25. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 188–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_16

    Chapter  Google Scholar 

  26. Kaliszyk, C.: Efficient low-level connection tableaux. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 102–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_8

    Chapter  MATH  Google Scholar 

  27. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_7

    Chapter  Google Scholar 

  28. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)

    Article  Google Scholar 

  29. Koopmann, P., Schmidt, R.A.: Uniform interpolation of \(\cal{ALC}\)-ontologies using fixpoints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 87–102. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_7

    Chapter  MATH  Google Scholar 

  30. Kovács, L., Voronkov, A.: First-order interpolation and interpolating proof systems. In: LPAR-21, pp. 49–64. EasyChair (2017)

    Google Scholar 

  31. Letz, R.: First-order tableau methods. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 125–196. Kluwer Academic Publishers (1999)

    Google Scholar 

  32. Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128, 143–159 (2001)

    Article  MathSciNet  Google Scholar 

  33. Lin, F., Reiter, R.: Forget It! In: Working Notes, AAAI Fall Symposium on Relevance, pp. 154–159 (1994)

    Google Scholar 

  34. Ludwig, M., Konev, B.: Practical uniform interpolation and forgetting for \(\cal{ALC}\) TBoxes with applications to logical difference. In: KR 2014. AAAI Press (2014)

    Google Scholar 

  35. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive description logics. In: IJCAI 2011, pp. 989–995. AAAI Press (2011)

    Google Scholar 

  36. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann. 76, 447–470 (1915)

    Article  MathSciNet  Google Scholar 

  37. McCune, W.: Un-Skolemizing clause sets. Inf. Process. Lett. 29(5), 257–263 (1988)

    Article  MathSciNet  Google Scholar 

  38. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_1

    Chapter  Google Scholar 

  39. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 421–446. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8_14

  40. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3), 159–182 (2010)

    Article  MathSciNet  Google Scholar 

  41. Pelzer, B., Wernhard, C.: System description: E-KRHyper. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 508–513. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_37

    Chapter  Google Scholar 

  42. Rudeanu, S.: Boolean Functions and Equations. Elsevier (1974)

    Google Scholar 

  43. Schmidt, R.A.: The Ackermann approach for modal logic, correspondence theory and second-order reduction. J. Appl. Logic 10(1), 52–74 (2012)

    Article  MathSciNet  Google Scholar 

  44. Schröder, E.: Vorlesungen über die Algebra der Logik. Teubner (1890–1905)

    Google Scholar 

  45. Smullyan, R.M.: First-Order Logic. Dover Publications, New York (1995). Corrected republication of the original edition by Springer-Verlag, New York (1968)

    Google Scholar 

  46. Stickel, M.E.: A Prolog technology theorem prover: implementation by an extended Prolog compiler. J. Autom. Reason. 4(4), 353–380 (1988)

    Article  MathSciNet  Google Scholar 

  47. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

    Google Scholar 

  48. Toman, D., Weddell, G.: Fundamentals of Physical Design and Query Compilation. Morgan and Claypool, San Rafael (2011)

    Google Scholar 

  49. Wernhard, C.: Semantic knowledge partitioning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 552–564. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_46

    Chapter  Google Scholar 

  50. Wernhard, C.: Circumscription and projection as primitives of logic programming. In: Technical Communications ICLP 2010. LIPIcs, vol. 7, pp. 202–211. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)

    Google Scholar 

  51. Wernhard, C.: Projection and scope-determined circumscription. J. Symbolic Comput. 47, 1089–1108 (2012)

    Article  MathSciNet  Google Scholar 

  52. Wernhard, C.: Abduction in logic programming as second-order quantifier elimination. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 103–119. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_8

    Chapter  Google Scholar 

  53. Wernhard, C.: Computing with logic as operator elimination: the ToyElim system. In: Tompits, H., et al. (eds.) INAP/WLP -2011. LNCS (LNAI), vol. 7773, pp. 289–296. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41524-1_17

    Chapter  Google Scholar 

  54. Wernhard, C.: Second-order quantifier elimination on relational monadic formulas – a basic method and some less expected applications. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 253–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_18

    Chapter  MATH  Google Scholar 

  55. Wernhard, C.: The PIE system for proving, interpolating and eliminating. In: PAAR 2016, pp. 125–138. CEUR-WS.org (2016)

    Google Scholar 

  56. Wernhard, C.: The Boolean solution problem from the perspective of predicate logic. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 333–350. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_19

    Chapter  MATH  Google Scholar 

  57. Wernhard, C.: Craig interpolation and access interpolation with clausal first-order tableaux. ArXiv e-prints (2018). https://arxiv.org/abs/1802.04982

  58. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Practice Logic Program. 12(1–2), 67–96 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wernhard, C. (2020). Facets of the PIE Environment for Proving, Interpolating and Eliminating on the Basis of First-Order Logic. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds) Declarative Programming and Knowledge Management. INAP WLP WFLP 2019 2019 2019. Lecture Notes in Computer Science(), vol 12057. Springer, Cham. https://doi.org/10.1007/978-3-030-46714-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46714-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46713-5

  • Online ISBN: 978-3-030-46714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics