Vital Parameters of the Heart

Part of the Bioanalysis book series (BIOANALYSIS, volume 9)


In cases when the activity of the heart has to be observed without contact, the electrocardiogram or ECG is replaced by the vibrocardiogram or VCG. The VCG is gained by filtering the output signal of a laser Doppler vibrometer. Whereas the ECG describes the electrical operation of the heart, the VCG originates from its mechanical operation. Since it is not possible to transform one signal into the other the equivalence of both has to be shown by comparison of the spectra, the histograms, and typical vital parameters like the heart rate extracted from both signals. The reference for the heartbeat operation is the ECG, the gold standard to describe the heartbeat operation. Therefore both signals have been documented in parallel and synchronized. A transversal filter with linear phase to reduce distortion is used to extract the VCG from the raw vibrometer signal. The estimates for the frequency known from the Chap.  3 on data acquisition and processing are used to extract the heartbeat for both, the ECG and the VCG. On this basis diseases like atrial fibrillation can be diagnosed. The vibrometer signals can be picked up at many measuring points on the surface of the skin of the patient. The most appropriate is the thorax. But also the neck or other locations can be of interest. Corruptions of the VCG are caused by several mechanical influences like the movement of the patient, coughing, or utterance. Therefore, a criterion of reliability is required to decide whether the filtered vibrometer signal is corrupted by these influences or not. To simplify the decision whether the VCG is corrupted by the utterance of the patient, specialized filters for the extraction of the heartbeat or other details of the heartbeat operation are used. Finally, the heart sounds are extracted from the vibrometer signal after appropriate filtering to control for the activity of the heart valves.


  1. 1.
    Bai, J., Sileshi, G., Nordehn, G., Burns, S., Wittmers, L.: Development of laser-based heart sound detection system. J. Biomed. Sci. Eng. 5, 34–37 (2012)CrossRefGoogle Scholar
  2. 2.
    Bauer, A.W.: Kardiovaskuläre Erkrankungen. In. Geradek, W.E. (ed.) Enzyklopädie Medizingeschichte, pp. 722–728. Walter de Gruyter, Berlin (2005). ISBN 3-11-0157144-4Google Scholar
  3. 3.
    Hall, J.E.: Guyton and Hall Textbook of Medical physiology. Elsevier, Philadelphia (2016)Google Scholar
  4. 4.
    Hoth, M., Wischmeyer, E.: Herzötne und Herzgeräusche. In: Behrends, J.C. (ed.) Duale Reihe Physiologie. Georg Thieme Verlag, Stuttgart (2010). ISBN 978-3-13138-411-9Google Scholar
  5. 5.
    Hottenrott, K., Haas, G., Esperer, H.H. (ed.): Herzfrequenzvariabilität, Trainingssteuerung, Biofeedback. Schriftenreihe der deutschen Vereinigung fr Sportwissenschaft, vol. 214. Czwalina Feldbauer Verlag, Hamburg (2011). ISBN 978-3-88020-570-3Google Scholar
  6. 6.
    International Telecommunication Union: ITU-T Recommendation R.52. Blue Book (1993)Google Scholar
  7. 7.
    Jeliffe, R.W.: Fundamentals of Electrocardiography. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Kammeyer, K.-D., Kroschel, K.: Digitale Signalverarbeitung. Springer-Vieweg, Wiesbaden (2018)CrossRefGoogle Scholar
  9. 9.
    Klinke, R., Silbernagl, S. (eds.): Lehrbuch der Physiologie, 3rd edn. Thieme, Stuttgart (2001)Google Scholar
  10. 10.
    Krebs in Deutschland 2013/14: Häufigkeit und Trends. Robert Koch Institut, Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. 11th edn. (2017)Google Scholar
  11. 11.
    Kroschel, K., Rigoll, G., Schuller, B.: Statistische Informationstechnik. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kroschel, K., Luik, A.: Laser-based remote measurement of vital parameters of the heart. Proceedings of the SPIE, vol. 10680, Strasbourg, pp. 1068000-2–1068000-8 (2018)Google Scholar
  13. 13.
    Kroschel, K., Metzler, J.: Lokalisation des optimalen Messorts zur berührungslosen Bestimmung von Puls- und Atemfrequenzen. 28th Konferenz Elektronische Sprachsignalverarbeitung, Saarbrücken, pp. 300–387 (2017)Google Scholar
  14. 14.
    Luik, A., Mignanelli, L., Kroschel, K., Schmitt, C., Rembe, C., Scalise, L.: Laser Doppler vibrometry for non-contact identification and classification of AV-blocks. Future Cardiol. 12, 269–279 (2016). Scholar
  15. 15.
    De Melis, M., Morbiducci, U., Scalise, L.: Identification of cardiac events by Optical Vibrometry: comparison with Phonocardiography. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 2956–2959 (2007)Google Scholar
  16. 16.
    Mignanelli, L., Luik, A., Kroschel, K., Scalise, L., Rembe, C.: Auswertung von Vibrometersignalen zur Bestimmung kardiovaskulärer Parameter. In: tm - Technisches Messen, vol. 83, pp. 462-473 (2016).
  17. 17.
    Morbiducci, U., Scalise, L., De Melis, M., Grigioni, M.: Optical vibrocardiography: a novel tool for the optical monitoring of cardiac activity. Ann. Biomed. Eng. 35(1), 45–58 (2007)CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    Tabatabai, H., Oliver, D.E., J.W. Rohrbough, J.W., Papadopoulos, C.: Novel applications of laser doppler vibration measurement to medical imaging. Sens Imaging, 14, pp. 13-28 (2013)Google Scholar
  21. 21.
    von Westphalen, G., Antwerpes, F., Steigenberger, P., Harig, K.: Herzton. (2019). Accessed 12 June 2019
  22. 22.
    Will, C., Shi, K., Schellenberger, S., Steigleder, T., Michler, F., Fuchs, J., Weigel, R., Ostgathe, C., Koelpin, A.: Radar-Based heart sound detection. Scientific Reports 8, (2018).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.VIDFraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSBKarlsruheGermany
  2. 2.Klinikum KarlsruheKarlsruheGermany

Personalised recommendations