Advertisement

Non-contact Health Monitoring with LDV

Chapter
  • 162 Downloads
Part of the Bioanalysis book series (BIOANALYSIS, volume 9)

Abstract

In the last years, non-contact health monitoring has become a research topic in biomedicine. It delivers several advantages in applications such as intensive care, home health care, rehabilitation, nursing of elderly, monitoring of physical efforts, measuring the stress of drivers and human–machine interaction. In literature, different methods for the detection of important vital signs can be found. Among them the Laser Doppler Vibrometry presents metrologic properties suitable for the detection of vital signs. Laser Doppler Vibrometry has been adopted in several biomedical fields. The application of interest in this book is restricted to the monitoring of cardiovascular and respiratory signals. This chapter reports a brief introduction of the available contactless methods for health monitoring. Consequently, the current state of laser Doppler vibrometry as a non-contact detection tool and its application for cardiac and respiration monitoring are described.

References

  1. 1.
    Al-Nji, A., Gibson, K., Lee, S-H., Chahl, J.: Monitoring of cardiorespiratory signal. Principles of remote measurements and review of methods. IEEE Access 5, 15776–15790 (2017)Google Scholar
  2. 2.
    Casaccia, S., Sirevaag, E.J., Richter, E.J., Casacanditella, L., Scalise, L., Rohrbaugh, J.W.: LDV arterial pulse signal: evidence for local generation of carotid. In: AIP Conference Proceedings, vol. 1740, p. 050008 (2016)Google Scholar
  3. 3.
    Campo, A., Segers, P., Dirckx, J.: Laser Doppler vibrometry for in vivo assessment of of arterial stiffness. In: IEEE International Workshop on Medical Measurements and Applications Proceedings, pp. 119–121 (2011)Google Scholar
  4. 4.
    Campo, A., Dirckx, J.: Dual-beam laser Doppler vibrometer for measurement of pulse wave velocity in elastic vessels. In: 22nd Congress of the International Commission for Optics: Light for the Development of the World. SPIE Proceedings, p. 80118Y (2011)Google Scholar
  5. 5.
    Campo, A., Waz, A., Dudzik, G., Dirckx, J., Abramski, K.: Application of four-channel vibrometer system for detection of arterial stiffness. In: AIP Conference Proceedings, vol. 1740, p. 050004 (2016)Google Scholar
  6. 6.
    Casacanditella, L., Cosoli, G., Casaccia, S., Tomasini, E.P., Scalise, L.: Indirect measurement of the carotid arterial pressure from vibrocardiographic signal: calibration of the waveform and comparison with photoplethymographic signal. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3568–3571 (2016)Google Scholar
  7. 7.
    Casacanditella, L., Cosoli, G., Casaccia, S., Scalise, L., Tomasini, E.P.: Derived non-contact continuous recording of blood pressure pulse waveform by means of vibrocardiography. In: Ando, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds.) Sensors, vol. 431, pp. 365–372. Springer, Berlin (2018)Google Scholar
  8. 8.
    Cosoli, G., Casacanditella, L., Pietroni, F., Calvaresi, A., Revel, G.M., Scalise, L.: A novel approach for features extraction in physiological signals. In: IEEE International Symposium on Medical Measurements and Applications (MMA). pp. 380–385 (2015)Google Scholar
  9. 9.
    De Melis, M., Morbiducci, U., Scalise, L., Tomasini, E.P., Delbeke, D., van Baets, R., Bortel, L.M., Segers, P.: A noncontact approach for the evaluation of large artery stiffness: a preliminary study. Am. J. Hypertens. 12(21), 1280–1283 (2008)CrossRefGoogle Scholar
  10. 10.
    De Melis, M., Morbiducci, U., Scalise, L.: Identification of cardiac events by optical vibrocardiography: comparison with phonocardiography. In: 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society, pp. 2956–2959 (2007)Google Scholar
  11. 11.
    Desjasrdins, C.L., Antonelli, L.T., Soares, E.: A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer. In: Proceedings of SPIE, vol. 6430. Advanced Biomedical and Clinical Diagnostic Systems, V. p. 64301C (2007)Google Scholar
  12. 12.
    Koegelenberg, S., Scheffer, C., Blanckenberg, M.M., Doubell, A.F.: Application of laser Doppler vibrometry for human heart auscultation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4479–4482 (2014)Google Scholar
  13. 13.
    Koegelenberg, S.: Application of laser Doppler vibrocardiography for human heart auscultation. Master thesis, Department of Mechanical and Mechatronic Engineering, University of Stellenbosch. https://scholar.sun.ac.za/handle10019.1/86649
  14. 14.
    Kranjec, J., Begus, S., Garsak, G., Drnovasek, J.: Non-contact heart rate and heart rate variability measurements: a review. Biomed. Signal Process. Control 13, 102–112 (2014)CrossRefGoogle Scholar
  15. 15.
    Luik, A., Mignanelli, L., Kroschel, K., Schmitt, C., Rembe, C., Scalise, L.: Laser Doppler vibrometry as a noncontact method to detect various degrees of atrioventricular block: a feasibility study. Futur. Cardiol. 12(3), 269–279 (2016)CrossRefGoogle Scholar
  16. 16.
    Marchionni, P., Scalise, L., Ercoli, I., Tomasini, E.P.: An optical measurement method for the simultaneous assessement of respiration and heart rates in preterm infants. Rev. Sci. Instrum. 84, 121705 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Medtronic: Cardis - Early stage CARdio Vascular Disease Detection with Integrated Silicon Photonics (2015). http://www.cardis-h2020.eu/ Cited 26 Aug 2019
  18. 18.
    Mignanelli, L., Rembe, C., Kroschel, K., Luik, A., Castellini, P., Scalise, L.: Medical diagnosis of the cardiovascular system on the carotid artery with IR laser Doppler vibrometer. In: AIP Conference Proceedings, vol. 1600, pp. 313–322 (2014)Google Scholar
  19. 19.
    Morbiducci, U., Scalise, L., De Melis, M., Grigioni, M.: Optical vibrocardiography: a novel tool for the optical monitoring of cardiac activity. Ann. Biomed. Eng. 35, 45–58 (2007)CrossRefGoogle Scholar
  20. 20.
    Pinotti, M., Paone, N., Santos, F.A., Tomasini, E.P.: Carotid artery pulse wave measured by a laser vibrometer. In: SPIE Proceedings, pp. 611–616 (1998)Google Scholar
  21. 21.
    Rembe, C., Würtge, M. Dräbenstedt, A., Braun, T.: Optisches Interferometer und Vibrometer mit solch einem optischen Interferometer. Europaeische Patentschrift EP 2 808 644 B1 (2017)Google Scholar
  22. 22.
    Rembe, C., Siegmund, G., Steger, H., Wörtge, M.: Measuring MEMs in motion laser Doppler vibrometry. In: Osten, W. (ed.) Optical Inspection of Microsystems, pp. 297–347. CRC Press, Boca Raton (2019)Google Scholar
  23. 23.
    Rohrbaugh, J.W.,: Ambulatory and non-contact recording methods. In: Caccioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of Psychphysiology, 4th edn. ch 14. Cambridge University Press, United Kingdom (2019)Google Scholar
  24. 24.
    Scalise, L.: Non contact heart monitoring. In: Millis, R.M. (ed.) Advances in Electrocardiograms, ch. 4. IntechOpen, Rijeka (2012)Google Scholar
  25. 25.
    Scalise, L., Cosoli, G., Casacanditella, L., Casccia, S. Rohrbaugh, J.W.: The measurement of blood pressure without contact: an LDV-based technique. In: IEEE International Symposium on Medical Measurements and Applications (MMA), pp. 245–250 (2017)Google Scholar
  26. 26.
    Scalise, L., Marchionni, P., Ercoli, I., Tomasini, E.P.: simultaneous measurement of respiration and cardiac period in preterm infants by laser Doppler vibrometry. In: AIP Conference Proceedings, vol. 1457, pp. 275–281 (2012)Google Scholar
  27. 27.
    Scalise, L., Morbiducci, U.: Non-contact cardiac monitoring from carotid artery using optical vibrocardiography. Med. Eng. Phys. 304, 490–497 (2008)CrossRefGoogle Scholar
  28. 28.
    Scalise, L., Marchionni, P., Ercoli, I., Tomasini, E.P.: simultaneous measurement of respiration and cardiac period in preterm infants by laser Doppler vibrometry. In: AIP Comference Proceedings, vol. 1457, pp. 275–281 (2012)Google Scholar
  29. 29.
    Scalise, L., Marchionni, P., Ercoli, I., Tomasini, E.P.: Laser measurement of respiration activity in preterm infants: monitorng of peculiar events. In: AIP Conference Proceedings, pp. 63–68 (2012)Google Scholar
  30. 30.
    Sirevaag, E.J., Casaccia, S., Richter, E.A., O’Sullivan, J.A., Scalise, L., Rohrbaugh, J.W.: Cardiorespiratory interactions: noncontact assessment using Doppler vibrometry. Psychphysiology 6(53), 847–867 (2016)CrossRefGoogle Scholar
  31. 31.
    Tabatabai, H., Oliver, D., Rohrbaugh, J.W., Papadopoulos, C.: Noval application of laser Doppler vibration measurements to medical imagings. Sens. Imaging. Int. J. 14, 13–28 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Wolfer, M.: Optischer Interferometrischer Recorder für die Vitalfunktionen (Tricorder) (2015). https://www.photonikforschung.de/lebenswissenshaften/pdf/TRICORDER-Vor-Ort-Analytik-Projektsteck-korr2019-08-bf-C1.pdf. Cited 26 Aug 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Electrical Information TechnologyTU ClausthalClausthal-ZellerfeldGermany

Personalised recommendations