Skip to main content
Book cover

Hadean Earth pp 195–216Cite as

Proposed Sources of Hadean Zircons

  • Chapter
  • First Online:
  • 1065 Accesses

Abstract

Any successful geodynamic or environmental model for early Earth must be consistent with ten robust lines of evidence derived from geochemical and petrologic observations of Hadean Jack Hills zircons. These are: (1) a zircon sub-population enriched in 18O and depleted in 30Si relative to mantle values; (2) low crystallization temperatures; (3) the presence of primary hydrous mineral inclusions; (4) the predominance of magmatic muscovite, quartz, and biotite inclusions; (5) zircon formation in relatively low heat flow environments; (6) sub-chondritic initial 176Hf/177Hf ratios consistent with source isolation as early as 4.50 Ga; (7) fission Xe isotope compositions indicating variable fractionation of Pu from U; (8) the absence of ultra-high pressure mineral inclusions; (9) zircon formation under a wide range of redox conditions; and (10) geochemical signatures diagnostic of felsic continental crust. Numerous models have been proposed to explain these characteristics, including an origin similar to Icelandic rhyolites or lunar KREEP terranes, crystallization from mafic igneous rocks, formation in impact melts or sagduction, plate boundary and heat pipe tectonic environments, and multi-stage scenarios involving several of these mechanisms. While an origin of Jack Hills Hadean zircons in felsic and intermediate granitoids in a plate-boundary-type setting is consistent with all ten geochemically-derived constraints, competitor models are either only partially consistent or inconsistent with the evidence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott, S. S., Harrison, T. M., Schmitt, A. K., & Mojzsis, S. J. (2012). A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles. Proceedings of the National Academy of Sciences, 109, 13486–13492.

    Article  Google Scholar 

  • Bell, E. A., & Harrison, T. M. (2013). Post-Hadean transitions in Jack Hills zircon provenance: A signal of the late heavy bombardment? Earth and Planetary Science Letters, 364, 1–11.

    Article  Google Scholar 

  • Bell, E. A., Harrison, T. M., Kohl, I. E., & Young, E. D. (2014). Eoarchean evolution of the Jack Hills zircon source and loss of Hadean crust. Geochimica et Cosmochimica Acta, 146, 27–42.

    Article  Google Scholar 

  • Blichert-Toft, J., & Albarède, F. (2008). Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth and Planetary Science Letters, 265, 686–702.

    Article  Google Scholar 

  • Boehnke, P., & Harrison, T. M. (2016). Illusory late heavy bombardments. Proceedings of the National Academy of Sciences, 113, 10802–10806.

    Article  Google Scholar 

  • Carley, T. L., Bell, E. A., Miller, E. A., Claiborne, L. L., & Harrison, T. M. (2020). Hadean, Archean, and modern Earth: Zircon-modeled melts clarify the formation of Earth’s earliest crust. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10502994.1.

  • Carley, T. L., Miller, C. F., Wooden, J. L., Bindeman, I. N., & Barth, A. P. (2011). Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas. Mineralogy and Petrology, 102, 135–161.

    Article  Google Scholar 

  • Carley, T. L., Miller, C. F., Wooden, J. L., Padilla, A. J., Schmitt, A. K., Economos, R. C., et al. (2014). Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record. Earth and Planetary Science Letters, 405, 85–97.

    Article  Google Scholar 

  • Carley, T. L., Bell, E. A., Miller, C. F., Claiborne, L. L., Harrison, T. M. (2018). Striking similarities and subtle differences across the Hadean-Archean boundary: Model melt insight into the early earth using new zircon/melt Kds. In Geol. Soc. Am. Abstracts.

    Google Scholar 

  • Claiborne, L. L., Miller, C. F., & Wooden, J. L. (2010). Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160, 511–531.

    Article  Google Scholar 

  • Coogan, L. A., & Hinton, R. W. (2006). Do the trace element compositions of detrital zircons require Hadean continental crust? Geology, 34, 633–636.

    Article  Google Scholar 

  • Darling, J., Storey, C., & Hawkesworth, C. (2009). Impact melt sheet zircons and their implications for the Hadean crust. Geology, 37, 927–930.

    Article  Google Scholar 

  • Davies, G. F. (1992). On the emergence of plate tectonics. Geology, 20, 963–966.

    Article  Google Scholar 

  • Dobrzhinetskaya, L., Wirth, R., & Green, H. (2014). Diamonds in earthʼs oldest zircons from Jack Hills conglomerate Australia are contamination. Earth and Planetary Science Letters, 387, 212–218.

    Article  Google Scholar 

  • Ellis, D. J., & Thompson, A. B. (1986). Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3 + SiO2 + H2O system under water-excess and water-deficient conditions to 10 kb: some implications for the origin of peraluminous melts from mafic rocks. Journal of Petrology, 27, 91–121.

    Article  Google Scholar 

  • Fischer, R., & Gerya, T. (2016). Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modeling. Gondwana Research, 37, 53–70.

    Article  Google Scholar 

  • François, C., Philippot, P., Rey, P., & Rubatto, D. (2014). Burial and exhumation during Archean sagduction in the east Pilbara granite-greenstone terrane. Earth and Planetary Science Letters, 396, 235–251.

    Article  Google Scholar 

  • Fu, B., F. Z. Page, A. J. Cavosie, J. Fournelle, N. T. Kita, N. T., Lackey, J. S., Wilde, S. A., & Valley, J. W. (2008). Ti-in-zircon thermometry: Applications and limitations. Contributions to Mineralogy and Petrology, 156, 197–215.

    Google Scholar 

  • Galer, S. J. G., & Goldstein, S. L. (1991). Early mantle differentiation and its thermal consequences. Geochimica et Cosmochimica Acta, 55, 227–239.

    Article  Google Scholar 

  • Glikson, A. (2006). Comment on “Zircon thermometer reveals minimum melting conditions on earliest Earth”. Science, 311, A779.

    Article  Google Scholar 

  • Gough, D. O. (1981). Solar interior structure and luminosity variations. Physics of Solar Variations (pp. 21–34). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., et al. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35, 643–646.

    Article  Google Scholar 

  • Harrison, T. M. (2009). The Hadean crust: Evidence from >4 Ga zircons. Annual Reviews of Earth and Planetary Sciences, 37, 479–505.

    Article  Google Scholar 

  • Harrison, T. M., & Schmitt, A. K. (2007). High sensitivity mapping of Ti distributions in Hadean zircons. Earth and Planetary Science Letters, 261, 9–19.

    Article  Google Scholar 

  • Harrison, T. M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P., & Mojzsis, S. J. (2005). Heterogeneous Hadean hafnium: Evidence of continental crust by 4.4–4.5 Ga. Science, 310, 1947–1950.

    Article  Google Scholar 

  • Harrison, T. M., Watson, E. B., & Aikman, A. K. (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35, 635–638.

    Article  Google Scholar 

  • Harrison, T. M., Schmitt, A. K., McCulloch, M. T., & Lovera, O. M. (2008). Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters, 268, 476–486.

    Article  Google Scholar 

  • Hartmann, W. K. (1975). Lunar “cataclysm”: A misconception? Icarus, 24, 181–187.

    Article  Google Scholar 

  • Hellebrand, E., Möller, A., Whitehouse, M., & Cannat, M. (2007). Formation of oceanic zircons. Geochimica et Cosmochimica Acta Suppl, 71, A391.

    Google Scholar 

  • Hermann, J., & Spandler, C. J. (2008). Sediment melts at sub-arc depths: An experimental study. Journal of Petrology, 49, 717–740.

    Article  Google Scholar 

  • Holden, P., Lanc, P., Ireland, T. R., Harrison, T. M., Foster, J. J., & Bruce, Z. P. (2009). Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains. International Journal of Mass Spectrometry, 286, 53–63.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from >4 Ga zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2010). Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters, 298, 367–376.

    Article  Google Scholar 

  • Hoskin, P. W. O., & Black, L. P. (2000). Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon. Journal of metamorphic Geology, 18(4), 423–439.

    Google Scholar 

  • Ingebritsen, S. E., & Manning, C. E. (2002). Diffuse fluid flux through orogenic belts: Implications for the world ocean. Proceedings of the National Academy of Sciences, 99, 9113–9116.

    Article  Google Scholar 

  • Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., Coath, C. D., Nemchin, A., Pidgeon, R. T., et al. (2010). Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters, 296, 45–56.

    Article  Google Scholar 

  • Kenny, G. G., Whitehouse, M. J., & Kamber, B. S. (2016). Differentiated impact melt sheets may be a potential source of Hadean detrital zircon. Geology, 44, 435–438.

    Article  Google Scholar 

  • Kielman, R., Whitehouse, M., Nemchin, A., & Kemp, A. (2018). A tonalitic analogue to ancient detrital zircon. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2018.08.028.

  • Korenaga, J. (2013). Initiation and evolution of plate tectonics on Earth: Theories and observations. Annual Review of Earth and Planetary Sciences, 41, 117–151.

    Article  Google Scholar 

  • Lovera, O. M., Harrison, T. M., Abbott. (2019). Can Hadean zircons constrain the Late Heavy Bombardment? American Geophysical Union Fall Abstracts V31G-0131 (Available at Earth and Space Science Open Archives).

    Google Scholar 

  • Macgregor, A. M. (1951). Some milestones in the Precambrian of Southern Rhodesia. Proceedings of the Geological Society of South Africa, 54, 27–71.

    Google Scholar 

  • Marchi, S., Bottke, W. F., Elkins-Tanton, L. T., Bierhaus, M., Wuennemann, K., Morbidelli, A., et al. (2014). Widespread mixing and burial of Earth’s Hadean crust by asteroid. Nature, 511, 578–582.

    Article  Google Scholar 

  • McKenzie, D., & Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625–679.

    Article  Google Scholar 

  • Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T., & Wilde, S. A. (2007). Hadean diamonds in zircon from Jack Hills Western Australia. Nature, 448, 917–920.

    Article  Google Scholar 

  • Mojzsis, S. J., Harrison, T. M., & Pidgeon, R. T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, 409, 178–181.

    Article  Google Scholar 

  • Moorbath, S. (1983). Precambrian geology: The most ancient rocks? Nature, 304, 585–586.

    Article  Google Scholar 

  • Moore, W. B., & Webb, A. A. G. (2013). Heat-pipe earth. Nature, 501, 501–505.

    Article  Google Scholar 

  • Mysen, B. O., & Wheeler, K. (2000). Solubility behavior of water in haploandesitic melts at high pressure and high temperature. American Mineralogist, 85, 1128–1142.

    Article  Google Scholar 

  • Nemchin, A. A, Whitehouse, M. J., Menneken, M., Geisler, T., Pidgeon, R. T., & Wilde, S. A. (2008). A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature, 454(7200), 92–95.

    Google Scholar 

  • Nutman, A. P. (2006). Comments on “Zircon thermometer reveals minimum melting conditions on earliest Earth”. Science, 311, 779b.

    Article  Google Scholar 

  • Patiño Douce, A., & Harris, N. (1998). Experimental constraints on Himalayan anatexis. Journal of Petrology, 39, 689–710.

    Article  Google Scholar 

  • Reimink, J. R., Chacko, T., Stern, R. A., & Heaman, L. M. (2014). Earth’s earliest evolved crust generated in an Iceland-like setting. Nature Geoscience, 7, 529–533.

    Article  Google Scholar 

  • Reimink, J. R., Davies, J. H., Bauer, A. M., & Chacko, T. (2020). A comparison between zircons from the Acasta Gneiss Complex and the Jack Hills region. Earth and Planetary Science Letters, 531, 115975.

    Google Scholar 

  • Rollinson, H. (2008). Ophiolitic trondhjemites: A possible analogue for Hadean felsic ‘crust’. Terra Nova, 20, 364–369.

    Article  Google Scholar 

  • Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J., & Gerya, T. (2017). Continental crust formation on early earth controlled by intrusive magmatism. Nature, 545, 332–335.

    Article  Google Scholar 

  • Shirey, S. B., Kamber, B. S., Whitehouse, M. J., Mueller, P. A., & Basu, A. R. (2008). A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. Geological Society of America Special Paper, 440, 1–29.

    Google Scholar 

  • Sizova, E., Gerya, T., Brown, M., & Perchuk, L. L. (2010). Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116(3–4), 209–229.

    Google Scholar 

  • Sizova, E., Gerya, T., & Brown, M. (2014). Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Research, 25(2), 522–545.

    Google Scholar 

  • Sizova, E., Gerya, T., Stüwe, K., & Brown, M. (2015). Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambrian Research, 271, 198–224.

    Google Scholar 

  • Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. Journal of Geophysical Research, 105, 17563–17578.

    Article  Google Scholar 

  • Sleep, N. H., Zahnle, K. J., Kasting, J. F., & Morowitz, H. J. (1989). Annihilation of ecosystems by large asteroid impacts on the early earth. Nature, 342, 139–142.

    Article  Google Scholar 

  • Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time-paths. Chantilly, VA: Mineral Society of America.

    Google Scholar 

  • Streckeisen, A. (1979). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 7(7), 331.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. (1974). Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters, 22, 1–21.

    Article  Google Scholar 

  • Trail, D., Mojzsis, S. J., Harrison, T. M., Schmitt, A. K., Watson, E. B., & Young, E. D. (2007). Constraints on Hadean zircon protoliths from oxygen isotopes, REEs and Ti-thermometry. Geochemistry, Geophysics, Geosystems, 6(8), Q06014.

    Google Scholar 

  • Trail, D., Boehnke, P., Savage, P. S., Liu, M. C., Miller, M. L., & Bindeman, I. (2018). Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon. Proceedings of the National Academy of Sciences, 115, 10287–10292.

    Article  Google Scholar 

  • Valley, J. W., Peck, W. H., King, E. M., & Wilde, S. A. (2002). A cool early earth. Geology, 30, 351–354.

    Article  Google Scholar 

  • Valley, J. W., Cavosie, A. J., Fu, B., Peck, W. H., Wilde, S. A. (2006). Comment on “Heterogeneous Hadean Hafnium: Evidence of continental crust at 4.4 to 4.5 Ga”. Science, 312, 1139a.

    Google Scholar 

  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.

    Article  Google Scholar 

  • White, A. J. R., & Chappell, B. W. (1977). Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7–22.

    Article  Google Scholar 

  • Wielicki, M. M., Harrison, T. M., & Schmitt, A. K. (2012a). Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth and Planetary Science Letters 321, 20–31.

    Google Scholar 

  • Wielicki, M. M., Harrison, T. M., Boehnke, P., & Schmitt, A. K. (2012b). Modeling zircon saturation within simulated impact events: Implications on impact histories of planetary bodies. Lunar and Planetary Science Conference Proceedings 43.

    Google Scholar 

  • Wielicki, M. M., Harrison, T. M., & Schmitt, A. K. (2016). Comment on Kenny et al. “Differentiated impact melt sheets may be a potential source of Hadean detrital zircon”. Geology, 44, e398-e398.

    Google Scholar 

  • Williams, I. S. (2007). Old diamonds and the upper crust. Nature, 448, 880–881.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Proposed Sources of Hadean Zircons. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_9

Download citation

Publish with us

Policies and ethics