Skip to main content

Radionuclide Produced Isotopic Variations in Mantle Rocks

  • Chapter
  • First Online:
  • 1044 Accesses

Abstract

Evidence from short- and long-lived radioisotope systems indicates that Earth was largely built from volatile-depleted planetesimals and planetary embryos during runaway accretion that occurred within 1–10 Ma of formation of the first solar system solids at 4.567 ± 0.001 Ga. Both long- and short-lived radionuclides leave isotopic signatures in mantle rocks that bear on when and how the silicate Earth formed and differentiated. The longstanding view that the Hadean mantle was compositionally undepleted appeared to be contradicted by differences between mantle and chondrite Nd isotopes which suggested a very early enriched terrestrial reservoir. Although recent work indicates this difference reflects differing irradiation histories of Earth-forming-materials and meteorites, and thus has little bearing on the timing of silicate differentiation, both terrestrial and lunar Lu–Hf zircon data appear to require global silicate differentiation by 4.50 ± 0.02 Ga billion years. Tungsten isotopic data from mantle rocks provides evidence of core formation by about 4.53 Ga and either very early isotopic isolation of silicate reservoirs or disturbance by a late chondritic veneer. Despite evidence that Moon formed substantially from proto-Earth material between about 4.53 and 4.50 Ga, the exact mechanism by which this occurred remains controversial. The once widely accepted model of collision of a Mars-sized body has lost support in light of contradictory evidence in the form of indistinguishable isotopic compositions of volatile and refractory elements between Earth and Moon. Models that appear to transcend this problem (hit-and-run collision, synestia, successive smaller collisions, magma ocean heating, etc.) are currently being evaluated. Although geochemical evidence requiring an early terrestrial magma ocean is almost entirely lacking, the sources of thermal energy available during accretion make such an appearance appear inevitable. If solidification proceeded from the bottom up, vigorous convection would have caused the lower mantle to rapidly crystallize with the upper mantle becoming largely solidified within several million years. The high abundance of highly siderophile elements in the upper mantle is strong evidence that Earth added at least half a percent of its present mass following core formation but prior to the Mesoarchean. Preservation of mantle isotopic anomalies throughout the Hadean-Archean seem unlikely to reflect sluggish mantle convention in a stagnant lid tectonic regime during that period as the plate tectonic era is associated with a large range of isolated mantle isotopic domains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The s-process is neutron-capture by atomic nuclei in stars that occurs at rates that are slow relative to the half-lives of their radioactive products.

References

  • Abe, Y. (2007). Behavior of water during terrestrial planet formation. Geochimica et Cosmochimica Acta Supplement, 71, A2.

    Article  Google Scholar 

  • Albright, D., Berkhout, F. and Walker, W. (1997) Plutonium and highly enriched uranium 1996. World inventories, capabilities and policies (pp. 502). Oxford.

    Google Scholar 

  • Allègre, C. J., Manhès, G., & Göpel, C. (2008). The major differentiation of the Earth at ~4.45 Ga. Earth and Planetary Science Letters, 267, 386–398.

    Article  Google Scholar 

  • Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C. H., Ireland, T. R., Petaev, M., Jacobsen, S. B. (2010). U–Pb chronology of the solar system’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343–350.

    Google Scholar 

  • Armstrong, R. L. (1991). The persistent myth of crustal growth. Australian Journal of Earth Science, 38, 613–630.

    Article  Google Scholar 

  • Asphaug, E. (2010). Similar-sized collisions and the diversity of planets. Chemie der Erde-Geochemistry, 70, 199–219.

    Article  Google Scholar 

  • Badro, J., Côté, A. S., & Brodholt, J. P. (2014). A seismologically consistent compositional model of Earth’s core. Proceedings of the National Academy of Sciences, 111, 7542–7545.

    Article  Google Scholar 

  • Barboni, M., Boehnke, P., Keller, B., Kohl, I. E., Schoene, B., Young, E. D., & McKeegan, K. D. (2017). Early formation of the Moon 4.51 billion years ago. Science advances, 3, p.e1602365.

    Google Scholar 

  • Becker, H., & Walker, R. J. (2003). In search of extant Tc in the early solar system: 98Ru and 99Ru abundances in iron meteorites and chondrites. Chemical Geology, 196, 43–56.

    Article  Google Scholar 

  • Benz, W., Slattery, W. L., & Cameron, A. G. W. (1986). The origin of the Moon and the single-impact hypothesis I. Icarus, 66, 515–535.

    Article  Google Scholar 

  • Bermingham, K. R., Worsham, E. A., & Walker, R. J. (2018). New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics. Earth and Planetary Science Letters, 487, 221–229.

    Article  Google Scholar 

  • Birch, F. (1964). Density and composition of mantle and core. Journal of Geophysical Research, 69, 4377–4388.

    Article  Google Scholar 

  • Boyet, M., Blichert-Toft, J., Rosing, M., Storey, M., Telouk, P., & Albarède, F. (2003). 142Nd evidence for early Earth differentiation. Earth and Planetary Science Letters, 214, 427–442.

    Article  Google Scholar 

  • Boyet, M., & Carlson, R. W. (2005). 142Nd evidence for early (>4.53 billion years ago) global differentiation of the silicate Earth. Science, 309, 576–581.

    Article  Google Scholar 

  • Boyet, M., & Carlson, R. W. (2006). A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth and Planetary Science Letters, 250, 254–268.

    Article  Google Scholar 

  • Brooks, C., & Hart, S. R. (1978). Rb–Sr mantle isochrons and variations in the chemistry of Gondwanaland’s lithosphere. Nature, 271, 220–223.

    Article  Google Scholar 

  • Budde, G., Burkhardt, C., Brennecka, G. A., Fischer-Gödde, M., Kruijer, T. S., Kleine, T. (2016). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293–303.

    Google Scholar 

  • Budde, G., Burkhardt, C., & Kleine, T. (2018). Earth’s accretion history inferred from the molybdenum isotope dichotomy of meteorites. In 18th Goldschmidt Conference Abstracts, 123.

    Google Scholar 

  • Burkhardt, C., Kleine, T., Oberli, F., Pack, A., Bourdon, B., & Wieler, R. (2011). Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth and Planetary Science Letters, 312, 390–400.

    Article  Google Scholar 

  • Burkhardt, C., Borg, L. E., Brennecka, G. A., Shollenberger, Q. R., Dauphas, N., & Kleine, T. (2016). A nucleosynthetic origin for the earth’s anomalous 142Nd composition. Nature, 537, 394–398.

    Google Scholar 

  • Byerly, B. L., Kareem, K., Bao, H., & Byerly, G. R. (2017). Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites. Nature Geoscience, 10, 871–875.

    Article  Google Scholar 

  • Canup, R. M. (2004). Simulations of a late lunar forming Impact. Icarus, 168, 433–456.

    Article  Google Scholar 

  • Canup, R. M. (2012). Forming a Moon with an Earth-like composition via a giant impact. Science, 338, 1052–1055.

    Article  Google Scholar 

  • Carlson, R. W., Boyet, M., & Horan, M. (2007). Chondrite barium, neodymium, and samarium isotopic heterogeneity and early Earth differentiation. Science, 316, 1175–1178.

    Article  Google Scholar 

  • Carlson, R. W., Garnero, E., Harrison, T. M., Li, J., Manga, M., McDonough, W. F., et al. (2014). How did early Earth become our modern world? Annual Review of Earth and Planetary Sciences, 42, 151–178.

    Article  Google Scholar 

  • Caro, G., Bourdon, B., Birck, J. L., & Moorbath, S. (2003). 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature, 423, 428–432.

    Article  Google Scholar 

  • Caro, G., Bourdon, B., Wood, B. J., & Corgne, A. (2005). Trace element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature, 436, 246–249.

    Article  Google Scholar 

  • Caro, G., Bourdon, B., Halliday, A.N., & Quitte, G. (2008). Non-chondritic Sm/Nd ratios in the terrestrial planets. Geochimica et Cosmochimica Acta Supplement, 72, A138.

    Google Scholar 

  • Caro, G., Morino, P., Mojzsis, S. J., Cates, N. L., & Bleeker, W. (2017a). Sluggish Hadean geodynamics: Evidence from coupled 146,147Sm–142,143Nd systematics in Eoarchean supracrustal rocks of the Inukjuak domain (Québec). Earth and Planetary Science Letters, 457, 23–37.

    Article  Google Scholar 

  • Caro, G., Morino, P., Reisberg, L., Mojzsis, S. J., Cates, N.L. and Bleeker, W. (2017b). 146Sm-142Nd constraints on the nature and evolution of the Hadean crust. Before life: The chemical, geological and dynamical setting for the emergence of an RNA World. Workshop, Boulder, CO, 9–12 October, 27–28.

    Google Scholar 

  • Cates, N. L., Ziegler, K., Schmitt, A. K., & Mojzsis, S. J. (2013). Reduced, reused and recycled: detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780 Ma) Nuvvuagittuq Supracrustal Belt, Québec (Canada). Earth and Planetary Science Letters, 362, 283–293.

    Article  Google Scholar 

  • Chambers, J. (2004). Planetary accretion in the inner Solar System. Earth Planet Sci. Lett., 223, 241–252.

    Article  Google Scholar 

  • Chou, C. L. (1978). Fractionation of siderophile elements in the earth’s upper mantle. In Proceedings of the 9th Lunar and Planetary Science Conference (pp. 219–230).

    Google Scholar 

  • Clayton, R. N. (1993). Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences, 21, 115–149.

    Article  Google Scholar 

  • Ćuk, M., Hamilton, D. P., Lock, S. J., & Stewart, S. T. (2016). Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature, 539, 402.

    Article  Google Scholar 

  • Ćuk, M., & Stewart, S. T. (2012). Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science, 338, 1047–1052.

    Article  Google Scholar 

  • Dauphas, N. (2017). The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521–524.

    Article  Google Scholar 

  • Dauphas, N., Burkhardt, C., Warren, P. H., & Fang-Zhen, T. (2014). Geochemical arguments for an Earth-like Moon-forming impactor. Philosophical Transactions of the Royal Society A, 372, 20130244.

    Article  Google Scholar 

  • Dauphas, N., & Marty, B. (2002). Inference on the nature and the mass of Earth’s late veneer from noble metals and gases. Journal of Geophysical Research, 107, 1–7.

    Article  Google Scholar 

  • Dauphas, N., Marty, B., & Reisberg, L. (2002). Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophysical Journal, 565, 640–644.

    Article  Google Scholar 

  • de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M., & Carlson, R. W. (2017). 142Nd/144Nd inferences on the nature and origin of the source of high 3He/4He magmas. Earth and Planetary Science Letters, 472, 62–68.

    Article  Google Scholar 

  • De Meijer, R. J., Anisichkin, V. F., Van Westrenen, W. (2013). Forming the moon from terrestrial silicate-rich material. Chemical Geology, 345, 40–49.

    Google Scholar 

  • Debaille, V., O’Neill, C., Brandon, A. D., Haenecour, P., Yin, Q., Mattielli, N., et al. (2013). Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth and Planetary Science Letters, 373, 83–92.

    Article  Google Scholar 

  • Drake, M. J. (2005). Origin of water in the terrestrial planets. Meteoritics & Planetary Science, 40, 519–527.

    Article  Google Scholar 

  • Elkins-Tanton, L. T. (2008). Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth and Planetary Science Letters, 271, 181–191.

    Article  Google Scholar 

  • Elkins-Tanton, L. T., Parmentier, E. M., & Hess, P. C. (2007). The effects of magma ocean depth and initial composition on planetary differentiation. XXXVIII: Lunar Planetary Science Conference.

    Google Scholar 

  • Genda, H., & Abe, Y. (2005). Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature, 433, 842–844.

    Article  Google Scholar 

  • Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K., & Costin, G. (2019). Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances 5, eaau3669.

    Google Scholar 

  • Grossman, L. (1972). Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619.

    Article  Google Scholar 

  • Halliday, A. N. (2008). Earth viewed from a late Moon. Geochimica et Cosmochimica Acta Supplement, 72, A344.

    Google Scholar 

  • Halliday, A. N. (2012). The origin of the Moon. Science, 338, 1040–1041.

    Article  Google Scholar 

  • Halliday, A. N., & Kleine, T. (2005). Meteorites and the timing, mechanisms, and conditions of terrestrial planet accretion and early differentiation. In D. S. Lauretta & H. Y. McSween Jr. (Eds.), Meteorites and the early solar system II (pp. 775–801). Tucson: Univ. Ariz. Press.

    Google Scholar 

  • Harrison, T. M., Schmitt, A. K., McCulloch, M. T., & Lovera, O. M. (2008). Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters, 268, 476–486.

    Article  Google Scholar 

  • Hofmann, A. W., & Hart, S. R. (1978). An assessment of local and regional isotopic equilibrium in the mantle. Earth and Planetary Science Letters, 38, 44–62.

    Article  Google Scholar 

  • Hosono, N., Karato, S. I., Makino, J., & Saitoh, T. R. (2019). Terrestrial magma ocean origin of the Moon. Nature Geoscience, 12, 418–423.

    Article  Google Scholar 

  • Iizuka, T., Yamaguchi, A., Haba, M. K., Amelin, Y., Holden, P., Zink, S., et al. (2015a). Timing of global crustal metamorphism on Vesta as revealed by high-precision U-Pb dating and trace element chemistry of eucrite zircon. Earth and Planetary Science Letters, 409, 182–192.

    Article  Google Scholar 

  • Iizuka, T., Yamaguchi, T., Hibiya, Y., & Amelin, Y. (2015b). Meteorite zircon constraints on the bulk Lu–Hf isotope composition and early differentiation of the Earth. Proceedings of the National Academy of Sciences, 112, 5331–5336.

    Article  Google Scholar 

  • Jacobsen, S. (2005). The Hf-W isotopic system and the origin of the Earth and Moon. Annual Review of Earth and Planetary Sciences, 33, 531–570.

    Article  Google Scholar 

  • Jones, J. H., & Drake, M. J. (1986). Geochemical constraints on core formation in the Earth. Nature, 322, 221–228.

    Article  Google Scholar 

  • Kinoshita, N., Paul, M., Kashiv, Y., Collon, P., Deibel, C. M., DiGiovine, B., et al. (2012). A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science, 335, 1614–1617.

    Article  Google Scholar 

  • Kleine, T., Münker, C., Mezger, K., & Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952–954.

    Article  Google Scholar 

  • Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., & Palme, H. (2009). Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 5150–5188.

    Article  Google Scholar 

  • Korenaga, J. (2006). Archean geodynamics and the thermal evolution of Earth. In K. Benn, J.-C. Mareschal, & K. Condie (Eds.), Archean geodynamics and environments (Vol. 164, pp. 7–32). AGU Geophysical Monograph Series.

    Google Scholar 

  • Krot, A. N., Amelin, Y., Cassen, P., & Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989–992.

    Article  Google Scholar 

  • Kruijer, T. S., Burkhardt, C., Budde, G., & Kleine, T. (2017). Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences, 114, 6712–6716.

    Google Scholar 

  • Kruijer, T. S., Touboul, M., Fischer-Gödde, M., Bermingham, K. R., Walker, R. J., & Kleine, T. (2014). Protracted core formation and rapid accretion of protoplanets. Science, 344, 1150–1154.

    Article  Google Scholar 

  • Lee, D., & Halliday, A. (1995). Hafnium-tungsten chronometry and the timing of terrestrial core formation. Nature, 378, 771–774.

    Article  Google Scholar 

  • Lock, S. J., & Stewart, S. T. (2017). The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. Journal of Geophysical Research: Planets, 122, 950–982.

    Google Scholar 

  • Lock, S. J., Stewart, S. T., Petaev, M. I., Leinhardt, Z. M., Mace, M. T., Jacobsen, S. B., & Ćuk, M. (2018). The origin of the Moon within a terrestrial synestia. Journal of Geophysical Research: Planets. https://doi.org/10.1002/2017je005333.

  • Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247.

    Article  Google Scholar 

  • Lugmair, G. W., & Shukolyukov, A. (1998). Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62, 2863–2886.

    Article  Google Scholar 

  • Magna, T., Dauphas, N., Righter, K., & Camp, R. (2017). Stable isotope constraints on the formation of Moon. LPI Contrib. 1988.

    Google Scholar 

  • Marty, B. (2012). The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 56–66.

    Article  Google Scholar 

  • McKeegan, K. D., Kallio, A. P. A., Heber, V. S., Jarzebinski, G., Mao, P. H., Coath, C. D., et al. (2011). The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 1528–1532.

    Article  Google Scholar 

  • Melosh, H. J. (2009). An isotopic crisis for the giant impact origin of the Moon?. Meteoritics and Planetary Science Supplement, 72, 5104–5015.

    Google Scholar 

  • Mundl, A., Touboul, M., Jackson, M. G., Day, J. M., Kurz, M. D., Lekic, V., et al. (2017). Tungsten-182 heterogeneity in modern ocean island basalts. Science, 356, 66–69.

    Article  Google Scholar 

  • Nakajima, M., & Stevenson, D. J. (2018). Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon. Earth and Planetary Science Letters, 487, 117–126.

    Article  Google Scholar 

  • Nimmo, F., & Kleine, T. (2015). Early differentiation and core formation: Processes and timescales. The Early Earth: Accretion and Differentiation, 83–102.

    Google Scholar 

  • O’Neil, J., Carlson, R. W., Francis, D., & Stevenson, R. K. (2008). Neodymium-142 evidence for Hadean mafic crust. Science, 321, 1828–1831.

    Article  Google Scholar 

  • Pahlevan, K., & Stevenson, D. J. (2007). Equilibration in the aftermath of the lunar-forming giant impact. Earth and Planetary Science Letters, 262, 438–449.

    Article  Google Scholar 

  • Pfalzner, S., Steinhausen, M., & Menten, K. (2014). Short dissipation times of proto-planetary disks: An artifact of selection effects? The Astrophysical Journal Letters, 793, L34.

    Article  Google Scholar 

  • Pidgeon, R. T. (1978). Big stubby and the early history of the Earth. U.S. Geological Survey Open File Report, 78-701, 334–335.

    Google Scholar 

  • Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F., & Walker, R. J. (2016). The coupled 182W‐142Nd record of early terrestrial mantle differentiation. Geochemistry, Geophysics, Geosystems, 17, 2168–2193.

    Article  Google Scholar 

  • Qin, L., Alexander, C. M. D., Carlson, R. W., Horan, M. F., & Yokoyama, T. (2010). Contributors to chromium isotope variation of meteorites. Geochimica et Cosmochimica Acta, 74, 1122–1145.

    Article  Google Scholar 

  • Render, J., Fischer-Gödde, M., Burkhardt, C., & Kleine, T. (2017). The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochemical Perspectives Letters, 3, 170–178.

    Article  Google Scholar 

  • Reufer, A., Meier, M. M., Benz, W., & Wieler, R. (2012). A hit-and-run giant impact scenario. Icarus, 221, 296–299.

    Article  Google Scholar 

  • Righter, K. (2003). Metal-silicate partitioning of siderophile elements and core formation in the early Earth. Annual Review of Earth and Planetary Sciences, 31, 135–174.

    Article  Google Scholar 

  • Righter, K. (2015). Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles. American Mineralogist, 100, 1098–1109.

    Article  Google Scholar 

  • Righter, K., & Drake, M. J. (1999). Effect of water on metal-silicate partitioning of siderophile elements a high pressure and temperature terrestrial magma ocean and core formation. Earth and Planetary Science Letters, 171, 383–399.

    Article  Google Scholar 

  • Righter, K., Humayun, M., & Danielson, L. (2008). Partitioning of palladium at high pressures and temperatures during core formation. Nature Geosci., 1, 321–323.

    Article  Google Scholar 

  • Rizo, H., Boyet, M., Blichert-Toft, J., O’Neil, J., Rosing, M. T., & Paquette, J. L. (2012). The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature, 491, 96–99.

    Article  Google Scholar 

  • Rizo, H., Touboul, M., Carlson, R. W., Boyet, M., & Walker, R. J. (2013). Early mantle composition and evolution inferred from 142Nd and 182W variation in Isua samples. Goldschmidt 2013, abstract.

    Google Scholar 

  • Rizo, H., Walker, R. J., Carlson, R. W., Horan, M. F., Mukhopadhyay, S., Manthos, V., et al. (2016). Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science, 352, 809–812.

    Article  Google Scholar 

  • Rosas, J. C., & Korenaga, J. (2018). Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. Earth and Planetary Science Letters, 494, 42–49.

    Article  Google Scholar 

  • Roth, A. S., Bourdon, B., Mojzsis, S. J., Rudge, J. F., Guitreau, M., & Blichert-Toft, J. (2014). Combined 147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochemistry, Geophysics, Geosystems, 15, 2329–2345.

    Article  Google Scholar 

  • Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C., & Righter, K. (2003). Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth and Planetary Science Letters, 205, 239–255.

    Article  Google Scholar 

  • Rufu, R., Aharonson, O., & Perets, H. B. (2017). A multiple-impact origin for the Moon. Nature Geoscience, 10, 89–94.

    Article  Google Scholar 

  • Saji, N. S., Larsen, K., Wielandt, D., Schiller, M., Costa, M. M., Whitehouse, M. J., et al. (2018). Hadean geodynamics inferred from time-varying 142Nd/144Nd in the early Earth rock record. Geochemical Perspectives Letters 7, https://doi.org/10.7185/geochemlet.1818.

  • Schmalzl, J., Houseman, G. A., & Hansen, U. (1996). Mixing in vigorous, time‐dependent three‐dimensional convection and application to earth’s mantle. Journal of Geophysical Research: Solid Earth, 101, 21847–21858.

    Google Scholar 

  • Solomatov, V. S. (2000). Fluid dynamics of a terrestrial magma ocean. In R. Canup & K. Righter (Eds.), Origin of the Earth and Moon (pp. 323–338). Tucson, TUS: University of Arizona Press.

    Google Scholar 

  • Solomatov, V. S. (2007). Magma oceans and primordial mantle differentiation. In G. Schubert (Ed.), Treatise on Geophysics 9 (pp. 91–120). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Physics of the Earth and Planetary Interiors, 19, 168–182.

    Article  Google Scholar 

  • Stevenson, D. J., & Halliday, A. N. (2014). The origin of the Moon. Philosophical Transactions of the Royal Society A, 372, https://doi.org/10.1098/rsta.2014.0289.

  • Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems 6, https://doi.org/10.1029/2004gc000824.

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Touboul, M., Kleine, T., Bourdon, B., Palme, H., & Wieler, R. (2007). Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature, 450, 1206–1209.

    Article  Google Scholar 

  • Trinquier, A., Birck, J. L., Allègre, C. J., Göpel, C., & Ulfbeck, D. (2008). 53Mn-53Cr systematics of the early Solar System revisited. Geochimica et Cosmochimica Acta, 72, 5146–5163.

    Article  Google Scholar 

  • Vockenhuber, C., Dillmann, I., Heil, M., Käppeler, F., Winckler, N., Kutschera, W., et al. (2007). Stellar (n, γ) cross sections of 174Hf and radioactive 182Hf. Physical Review C, 75, 015804.

    Article  Google Scholar 

  • Walker, R. J. (2009). Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chemie der Erde—Geochemistry, 69, 101–125.

    Google Scholar 

  • Walker, R. J. (2016). Siderophile elements in tracing planetary formation and evolution. Geochemical Perspectives, 5, 1–2.

    Article  Google Scholar 

  • Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93–100.

    Article  Google Scholar 

  • Wetherill, G. W. (1980). Formation of the terrestrial planets. Annual Review of Astronomy and Astrophysics, 18, 77–113.

    Article  Google Scholar 

  • White, W. M. (2015). Isotope geochemistry. John Wiley & Sons.

    Google Scholar 

  • Wiechert, U., Halliday, A. N., Lee, D. C., Snyder, G. A., Taylor, L. A., & Rumble, D. (2001). Oxygen isotopes and the moon-forming giant impact. Science, 294, 345–348.

    Article  Google Scholar 

  • Willbold, M., Elliott, T., & Moorbath, S. (2011). The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature, 477, 195–198.

    Article  Google Scholar 

  • Williams, J. P., & Cieza, L. A. (2011). Protoplanetary disks and their evolution. Annual Review of Astronomy and Astrophysics, 49, 67–117.

    Article  Google Scholar 

  • Wisdom, J., & Tian, Z. (2015). Early evolution of the Earth-Moon system with a fast-spinning Earth. Icarus, 256, 138–146.

    Article  Google Scholar 

  • Wood, B. J., & Halliday, A. N. (2005). Cooling of the Earth and core formation after the giant impact. Nature, 437, 1345–1348.

    Article  Google Scholar 

  • Yin, Q., Jacobsen, S. B., Yamashita, K., Blichert-Toft, J., Télouk, P., & Albarede, F. (2002). A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature, 418, 949–951.

    Article  Google Scholar 

  • Young, E. D., Kohl, I. E., Warren, P. H., Rubie, D. C., Jacobson, S. A., & Morbidelli, A. (2016). Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 351, 493–496.

    Article  Google Scholar 

  • Zindler, A., & Hart, S. (1986). Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493–571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Radionuclide Produced Isotopic Variations in Mantle Rocks. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_3

Download citation

Publish with us

Policies and ethics