Skip to main content

Collectanea

  • Chapter
  • First Online:
Hadean Earth
  • 1020 Accesses

Abstract

How the scientific community, in the absence of any observational evidence, came to a consensus that the first many hundreds of millions of years of Earth history saw a desiccated, lifeless, molten wasteland is worthy of analysis. This chapter addresses problematic aspects of our epistemology that led to this paradigm and concludes that the historical sciences can sometimes be influenced by the same existential urges for control that fueled the past four thousand years of ubiquitous creation mythology. On a more tangible level, emerging scientific views in the late 1960s provided heretofore unavailable sources of thermal energy to models of the early solar system. This occurred just prior to the return of lunar highland samples which showed that Moon had almost been globally melted almost immediately upon formation, in stark contrast to the then prevailing paradigm of cold accretion. Arguably overreacting in overthrow of that model, the community quickly adopted the view that the first many hundreds of millions of years of Earth history had been too turbulent to leave any record. Shortly thereafter, the emergence of the large radius ion microprobe provided the tool needed to first discover and then explore Hadean zircons from Western Australia. The seemingly contradictory story these results presented would take a generation to seriously challenge the orthodoxy of a protracted, hellish world. This intellectual inertia partially reflects the inevitability of the Earth and planetary sciences being more tolerant of what amounts to untestable hypotheses relative to other physical sciences. While that is understandable given the challenge that historical sciences face in attempting to understand processes operating many billions of years ago, overly elaborate models invoking speculative mechanisms that lack the basis for falsification tend to crowd out other, possibly better, models from the scientific arena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An MRP of 5000 permits a molecule of mass 5001 to be recognized separately from a molecule of mass 5000.

  2. 2.

    https://www.science.org.au/learning/general-audience/history/interviews-australian-scientists/professor-bill-compston-isotope#6.

References

  • Aarts, A. A. et al. (2015). Estimating the reproducibility of psychological science. Science, 349, p. aac4716.

    Google Scholar 

  • Abe, Y. (1993). Physical state of the very early Earth. Lithos, 30, 223–235.

    Article  Google Scholar 

  • Barber, B. (1961). Resistance by scientists to scientific discovery. Science, 134, 596–602.

    Article  Google Scholar 

  • Begley, C. G., & Ellis, L. M. (2012). Drug development: Raise standards for preclinical cancer research. Nature, 483, 531–533.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. (2015a). Potentially biogenic carbon preserved in a 4.1 Ga zircon. Proceedings of the National Academy of Sciences, 112, 14518–14521.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., Hopkins-Wielicki, M. D., & Harrison, T. M. (2015b). Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos, 234, 15–26.

    Article  Google Scholar 

  • Bence, A. E., & Albee, A. L. (1968). Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382–403.

    Article  Google Scholar 

  • Boltwood, B. (1907). On the ultimate disintegration products of the radioactive elements. Part II. The disintegration products of uranium. American Journal of Science, 4, 77–80.

    Google Scholar 

  • Brush, S. G. (1982). Nickel for your thoughts: Urey and the origin of the Moon. Science, 217, 891–898.

    Article  Google Scholar 

  • Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957). Synthesis of the elements in stars. Reviews of Modern Physics, 29, 547–650.

    Article  Google Scholar 

  • Cameron, A. G. W. (1962). The formation of the sun and planets. Icarus, 1, 13–69.

    Article  Google Scholar 

  • Chamberlin, T. C. (1901). On a possible function of disruptive approach in the formation of meteorites, comets, and nebulae. Journal of Geology, 9, 369–392.

    Article  Google Scholar 

  • Chamberlin, T. C. (1905). Carnegie inst. Year book no. 3 for 1904, (p. 195).

    Google Scholar 

  • Chamberlin, T. C. (1916). The origin of the earth. (p. 271). University of Chicago Press.

    Google Scholar 

  • Collins, F. S., & Tabak, L. A. (2014). NIH plans to enhance reproducibility. Nature, 505, 612–613.

    Article  Google Scholar 

  • Compston, W., Williams, I. S., & Meyer, C. (1984). U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research: Solid Earth, 89, B525–B534.

    Article  Google Scholar 

  • Daly, R. A. (1914). Igneous rocks and their origin. (p. 563). McGraw-Hill.

    Google Scholar 

  • Dawkins, R. (2007). The god delusion. Random House.

    Google Scholar 

  • de Chambost, E. (2011). A history of CAMECA (1954–2009). Advances in Imaging and Electron Physics, 167, 1–119.

    Article  Google Scholar 

  • England, P., & Molnar, P. (1993). The interpretation of inverted metamorphic isograds using simple physical calculations. Tectonics, 12, 145–157.

    Article  Google Scholar 

  • Ernst, W. G. (1983). The early earth and the archean rock record. In Earth’s earliest biosphere: Its origin and evolution. (pp. 41–52). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Eucken, A. (1944). Über den zustand des erdinnern. Naturwissenschaften, 32, 112–121.

    Article  Google Scholar 

  • Fowler, W. A., Greenstein, J. L., & Hoyle, F. (1962). Nucleosynthesis during the early history of the solar system. Geophysical Journal International, 6, 148–220.

    Article  Google Scholar 

  • Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., & Compston, W. (1983). Ion microprobe identification of 4100–4200 myr-old terrestrial zircons. Nature, 304, 616–618.

    Article  Google Scholar 

  • Fyfe, W. S. (1978). The evolution of the earth’s crust: Modern plate tectonics to ancient hot spot tectonics? Chemical Geology, 23, 89–114.

    Article  Google Scholar 

  • Gamow, G., & Hynek, J. A. (1945). A new theory by C.F. von Weizsäcker of the origin of the planetary systen. Astrophysical Journal, 101, 249–254.

    Article  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., & Lourens, L. J. (2004). A new geologic time scale, with special reference to precambrian and neogene. Episodes, 27, 83–100.

    Article  Google Scholar 

  • Gray, C., & Compston, W. (1974). Excess 26Mg in the Allende meteorite. Nature, 251, 495–497.

    Article  Google Scholar 

  • Hamilton, W. B. (1998). Archean magmatism and deformation were not products of plate tectonics. Precambrian Research, 91, 143–179.

    Article  Google Scholar 

  • Harrison, T. M. (2009). The hadean crust: Evidence from >4 Ga zircons. Annual Reviews of Earth and Planetary Sciences, 37, 479–505.

    Article  Google Scholar 

  • Harrison, T. M., Bell, E. A., & Boehnke, P. (2017). Hadean zircon petrochronology. Reviews in Mineralogy and Geochemistry, 83, 329–363.

    Article  Google Scholar 

  • Harrison, T. M., Copeland, P., Kidd, W. S. F., & Yin, A. N. (1992). Raising Tibet. Science, 255, 1663–1670.

    Article  Google Scholar 

  • Harrison, T. M., Heizler, M. T., McKeegan, K. D., & Schmitt, A. K. (2010). In situ 40K-40Ca ‘double-plus’ SIMS dating resolves Klokken feldspar 40K-40Ar paradox. Earth and Planetary Science Letters, 299, 426–433.

    Article  Google Scholar 

  • Harrison, T. M., Ryerson, F. J., Le Fort, P., Yin, A., Lovera, O. M., & Catlos, E. J. (1997). A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. Earth and Planetary Science Letters, 146, E1–E8.

    Article  Google Scholar 

  • Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine 2. https://doi.org/10.1371/journal.pmed.0020124.

  • Jeans, J. H. (1919). Problems of cosmogony and stellar dynamics (p. 292). Adams Prize Essay: Cambridge University Press.

    Google Scholar 

  • Jeffreys, H. (1917). Theories regarding the origin of the solar system. Science Progress, 12, 52–62.

    Google Scholar 

  • Jeffreys, H. (1918). The early history of the solar system. Nature, 101, 447–449.

    Google Scholar 

  • Jeffreys, H. (1929). The early history of the solar system on the collision theory. Monthly Notices of the Royal Astronomical Society, 89, 731–738.

    Article  Google Scholar 

  • Kamber, B. S., Whitehouse, M. J., Bolhar, R., & Moorbath, S. (2005). Volcanic resurfacing and the early terrestrial crust: Zircon U-Pb and REE constraints from the Isua greenstone belt, southern West Greenland. Earth Planet Science Letter, 240, 276–290.

    Article  Google Scholar 

  • Kemp, A. I. S., Hickman, A. H., Kirkland, C. L., & Vervoort, J. D. (2015). Hf isotopes in detrital and inherited zircons of the pilbara craton provide no evidence for hadean continents. Precambrian Research, 261, 112–126.

    Article  Google Scholar 

  • Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., Coath, C. D., Nemchin, A., Pidgeon, R. T., et al. (2010). Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters, 296, 45–56.

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. (p. 210). University of Chicago Press.

    Google Scholar 

  • Kuiper, G. P. (1951). On the origin of the solar system. Proceedings of the National Academy of Sciences, 37, 1–14.

    Article  Google Scholar 

  • Leeming, D. A. (2010). Creation myths of the world: An encyclopedia (p. 553) (in two volumes). ABC-CLIO Inc.

    Google Scholar 

  • Lunine, J. I. (1999). Earth: Evolution of a habitable world. Cambridge University Press.

    Google Scholar 

  • Maher, K. A., & Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.

    Article  Google Scholar 

  • Mattinson, J. M. (2005). Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66.

    Article  Google Scholar 

  • McDougall, I., & Harrison, T. M. (1999). Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press.

    Google Scholar 

  • McDougall, I., & Tarling, D. H. (1964). Dating geomagnetic polarity zones. Nature, 202, 171–172.

    Article  Google Scholar 

  • Miller, S. L., & Urey, H. C. (1959). Origin of Life. Science, 130, 1622–1624.

    Article  Google Scholar 

  • Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., & Friend, C. R. L. (1996). Evidence for life on Earth by 3800 Myr. Nature, 384, 55–59.

    Article  Google Scholar 

  • Moorbath, S. (1983). Precambrian geology: The most ancient rocks? Nature, 304, 585–586.

    Article  Google Scholar 

  • Moorbath, S. (2005). Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaean transition. Applied Geochemistry, 20, 819–824.

    Article  Google Scholar 

  • Moulton, F. R. (1905). On the evolution of the solar system. Astrophysical Journal, 22, 165–181.

    Article  Google Scholar 

  • NASEM (National Academies of Sciences, Engineering, and Medicine). (2019). Reproducibility and replicability in science. National Academies Press. https://doi.org/10.17226/25303.

  • Ottati, V., Price, E. D., Wilson, C., & Sumaktoyo, N. (2015). When self-perceptions of expertise increase closed-minded cognition: The earned dogmatism effect. Journal of Experimental Social Psychology, 61, 131–138.

    Article  Google Scholar 

  • Parsons, I., Brown, W. L., & Smith, J. V. (1999). 40Ar/39Ar thermochronology using alkali feldspars: Real thermal history or mathematical mirage of microtexture? Contributions to Mineralogy and Petrology, 136, 92–110.

    Article  Google Scholar 

  • Patterson, C., Tilton, G., & Inghram, M. (1955). Age of the Earth. Science, 121, 69–75.

    Article  Google Scholar 

  • Popper, K. (1957). The poverty of historicism (p. 166). Boston: The Beacon Press.

    Google Scholar 

  • Popper, K. (1962). Conjectures and Refutations: The growth of scientific knowledge. Routledge.

    Google Scholar 

  • Popper, K. (1976). Unended quest. Open Court, LaSalle, IL: An Intellectual Autobiography.

    Google Scholar 

  • Prinz, F., Schlange, T., & Asadullah, K. (2011). Believe it or not: How much can we rely on published data on potential drug targets? Nature Reviews Drug Discovery, 10, 712–715.

    Article  Google Scholar 

  • Reimink, J. R., Davies, J. H. F. L., Chacko, T., Stern, R. A., Heaman, L. M., Sarkar, C., et al. (2016). No evidence for hadean continental crust within earth’s oldest evolved rock unit. Nature Geoscience, 9, 777–780. https://doi.org/10.1038/ngeo2786.

    Article  Google Scholar 

  • Righter, K. (2015). Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles. American Mineralogist, 100, 1098–1109.

    Article  Google Scholar 

  • Rollinson, H. (2008). Ophiolitic trondhjemites: A possible analogue for hadean felsic ‘crust’. Terra Nova, 20, 364–369.

    Article  Google Scholar 

  • Russell, R. D., & Allan, D. W. (1955). The age of the earth from lead isotope abundances. Geophysical Journal International, 7, 80–101.

    Article  Google Scholar 

  • Safronov, V. S. (1958). On the growth of terrestrial planets. Vopr. Kosmog., Akad. Nauk S.S.S.R. 6, 63–77.

    Google Scholar 

  • Safronov, V. S. (1972). Evolution of the protoplanetary cloud and the formation of the Earth and planets. Translated from Russian. Jerusalem (Israel): Israel program for scientific translations. (p. 212). Keter Publishing House.

    Google Scholar 

  • Schärer, U., & Allegre, C. J. (1985). Determination of the age of the Australian continent by single-grain zircon analysis of Mt. Narryer metaquartzite.Nature, 315, 52–55.

    Article  Google Scholar 

  • Shirey, S. B., Kamber, B. S., Whitehouse, M. J., Mueller, P. A., & Basu, A. R. (2008). A review of the isotopic and trace element evidence for mantle and crustal processes in the hadean and archean: Implications for the onset of plate tectonic subduction. Geological Society of America Special Paper, 440, 1–29.

    Google Scholar 

  • Smith, J. V. (1981). The first 800 million years of earths history. Philosophical transactions of the royal society London Ser. A 301, pp. 401–422.

    Google Scholar 

  • Smith, E., & Morowitz, H. J. (2016). The origin and nature of life on earth: The emergence of the fourth geosphere. Cambridge University Press.

    Google Scholar 

  • Solomon, S. C. (1980). Differentiation of crusts and cores of the terrestrial planets: Lessons for the early earth? Precambrian Research, 10, 177–194.

    Article  Google Scholar 

  • Urey, H. C. (1951). The origin and development of the earth and other terrestrial planets. Geochimica et Cosmochimica Acta, 1, 209–277.

    Article  Google Scholar 

  • Urey, H. C. (1952a). The planets: Their origin and development (p. 245). New Haven: Yale Univ. Press.

    Google Scholar 

  • Urey, H. C. (1952b). The origin of the earth. Scientific American, 187(October), 53–61.

    Article  Google Scholar 

  • Urey, H. C. (1955). The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Processes National Academic Science USA, 41, 127–144.

    Article  Google Scholar 

  • Waltham, J. (2014). Lucky Planet (p. 198). New York, NY: Basic Books (Perseus).

    Google Scholar 

  • Ward, P. D., & Brownlee, D. (2000). Rare earth: Why complex life is uncommon in the universe. New York: Copernicus Books.

    Google Scholar 

  • Weizsäcker, C. F. V. (1943). Über die entstehung des planetensystems. Zeitschrift für Astrophysik 22, 319–355.

    Google Scholar 

  • Wetherill, G. W. (1972). The beginning of continental evolution. Tectonophysics, 13, 13–45.

    Article  Google Scholar 

  • Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review Earth Planetary Science, 28, 211–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Collectanea. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_12

Download citation

Publish with us

Policies and ethics