Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 261 Accesses

Abstract

Historic studies related to earthquakes such as in 1985 Mexico City, 1994 Northridge, 1995 Kobe, 1999 Kocaeli, 2001 Bhuj, 2008 Sichuan, 2008 Chile, and 2012 Emilia expose that earthquakes have caused severe damage in civil structures all over the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.R. Fisco, H. Adeli, Smart structures: part I—active and semi-active control. Scientia Iranica 18(3), 275–284 (2011)

    Google Scholar 

  2. N.R. Fisco, H. Adeli, Smart structures: part II—hybrid control systems and control strategies. Scientia Iranica 18(3), 285–295 (2011)

    Google Scholar 

  3. J.T.P. Yao, Concept of structural control. J. Struct. Div. 98(7), 1567–1574 (1972)

    Google Scholar 

  4. G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skeleton, T.T. Soong, B.F. Spencer Jr., J.T.P. Yao, Structural control: past, present and future. J. Eng. Mech. 123(9), 897–971 (1997)

    Article  Google Scholar 

  5. R.J. McNamara, Tuned mass dampers for buildings. J. Struct. Div. 103(9), 1785–1798 (1977)

    Google Scholar 

  6. B. Donaldson, Introduction to Structural Dynamics (Cambridge University Press, UK, 2006)

    Book  Google Scholar 

  7. F. Yi, S.J. Dyke, Structural control systems: performance assessment, in American Control Conference, vol. 1, no. 6 (2000), pp. 14–18

    Google Scholar 

  8. E. Cruz, S. Cominetti, Three-dimensional buildings subjected to bidirectional earthquakes. Validity of analysis considering unidirectional earthquakes, in 12th World Conference on Earthquake Engineering (2000)

    Google Scholar 

  9. J.S. Heo, S.K. Lee, E. Park, S.H. Lee, K.W. Min, H. Kim, J. Jo, B.H. Cho, Performance test of a tuned liquid mass damper for reducing bidirectional responses of building structures, in The Structural Design of Tall and Special Buildings, vol. 18, no. 7, (2009), pp. 789–805

    Google Scholar 

  10. J. Zhang, K. Zeng, J. Jiang, An optimal design of bi-directional TMD for three dimensional structure. Comput. Struct. Eng. 935–941 (2009)

    Google Scholar 

  11. J.L. Lin, K.C. Tsai, Seismic analysis of two-way asymmetric building systems under bi-directional seismic ground motions. Earthq. Eng. Struct. Dyn. 37(2), 305–328 (2008)

    Article  MathSciNet  Google Scholar 

  12. B.F. Spencer, S. Nagarajaiah, State of the art of structural control. J. Struct. Eng. 129(7), 845–856 (2003)

    Article  Google Scholar 

  13. T.T. Soong, B.F. Spencer, Supplemental energy dissipation: state-of-theart and state-of-the-practice. Eng. Struct. 24(3), 243–259 (2002)

    Article  Google Scholar 

  14. S.G. Luca, F. Chira, V.O. Rosca, Passive active and semi-active control systems in civil engineering, Constructil Arhitectura 3–4 (2005)

    Google Scholar 

  15. T.T. Soong, Active Structural Control: Theory and Practice (Addison-Wesley Pub, New York, 1999)

    Google Scholar 

  16. M.C. Constantinou, M.D. Symans, Seismic response of structures with supplemental damping, in The Structural Design of Tall Buildings, vol. 22, no. 2 (1993), pp. 77–92

    Google Scholar 

  17. T.K. Datta, A state-of-the-art review on active control of structures. ISET J. Earthq. Technol. 40(1), 1–17 (2003)

    Google Scholar 

  18. J.P. Hartog, Mechanical Vibrations (McGraw-Hill, New York, 1956)

    MATH  Google Scholar 

  19. N.B. Desu, S.K. Deb, A. Dutta, Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings, in Structural Control and Health Monitoring, vol. 13, no. 5 (2006), pp. 897–916

    Google Scholar 

  20. K. Xu, T. Igusa, Dynamic characteristics of multiple substructures with closely spaced frequencies. Earthq. Eng. Struct. Dyn. 21(12), 1059–1070 (1992)

    Article  Google Scholar 

  21. S. Elias, V. Matsagar, Research developments in vibration control of structures using passive tuned mass dampers. Ann. Rev. Control 44, 129–156 (2017)

    Article  Google Scholar 

  22. H.-N. Li, L.-S. Huo, Seismic response reduction of eccentric structures using tuned liquid column damper (TLCD), in Vibration Analysis and Control—New Trends and Development (2011)

    Google Scholar 

  23. M.J. Hochrainer, C. Adam, F. Ziegler, Application of tuned liquid column dampers for passive structural control, in 7th International Congress on Sound and Vibration (ICSV 7), Garmisch-Partenkirchen, Germany (2000)

    Google Scholar 

  24. S.G. Liang, Experiment study of torsionally structural vibration control using circular tuned liquid column dampers. Spec Struct. 13(3), 33–35 (1996)

    Google Scholar 

  25. C. Fu, Application of torsional tuned liquid column gas damper for plan-asymmetric buildings, in Structural Control and Health Monitoring, vol. 18, no. 5 (2011), pp. 492–509

    Google Scholar 

  26. A. Yanik, J.P. Pinelli, H. Gutierrez, Control of a three-dimensional structure with magneto-rheological dampers, in 11th International Conference on Vibration Problems, ed by Z. Dimitrovová et al., Lisbon, Portugal (2013)

    Google Scholar 

  27. M. Azimi, H. Pan, M. Abdeddaim, Z. Lin, Optimal design, of active tuned mass dampers for mitigating translational-torsional motion of irregular buildings, in Experimental Vibration Analysis for Civil Structures (EVACES), ed by J. Conte, R. Astroza, G. Benzoni, G. Feltrin, K. Loh, B. Moaveni. Lecture Notes in Civil Engineering, vol. 5 (Springer, Cham, 2017), p. 2018

    Google Scholar 

  28. M.R. Jolly, J.W. Bender, J.D. Carlson, Properties and applications of commercial magnetorheological fluids, in Smart Structures and Materials 1998: Passive Damping and Isolation, vol. 3327 (1998), pp. 262–275

    Google Scholar 

  29. F. Yi, S.J. Dyke, J.M. Caicedo, J.D. Carlsonf, Experimental verification of multi-input seismic control strategies for smart dampers. J. Eng. Mech. 127(11), 1152–1164 (2001)

    Article  Google Scholar 

  30. A.S. Ahlawat, A. Ramaswamy, Multiobjective optimal FLC driven hybrid mass damper system for torsionally coupled, seismically excited structures. Earthq. Eng. Struct. Dyn. 31(12), 2121–2139 (2002)

    Article  Google Scholar 

  31. H. Kim, H. Adeli, Hybrid control of irregular steel highrise building structures under seismic excitations. Int. J. Numer. Methods Eng. 63(12), 1757–1774 (2005)

    Article  MATH  Google Scholar 

  32. J.M. Angeles-Cervantes, L. Alvarez-Icaza, 3D Identification of buildings seismically excited, in 16th IFAC World Congress, vol. 16, Czech Republic (2005)

    Google Scholar 

  33. V. Gattulli, M. Lepidi, F. Potenza, Seismic protection of frame structures via semi-active control: modeling and implementation issues. Earthq. Eng. Eng. Vibr. 8(4), 645–672 (2009)

    Google Scholar 

  34. J.L. Lin, K.C. Tsai, Y.J. Yu, Bi-directional coupled tuned mass dampers for the seismic response control of two-way asymmetric-plan buildings. Earthq. Eng. Struct. Dyn. 40(6), 675–690 (2011)

    Article  Google Scholar 

  35. B. Zhao, H. Gao, Torsional vibration control of high-rise building with large local space by using tuned mass damper. Adv. Materi. Res. 446–449, 3066–3071 (2012)

    Article  Google Scholar 

  36. M.P. Singh, S. Singh, L.M. Moreschi, Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dyn. 31(4), 749–769 (2002)

    Article  Google Scholar 

  37. Y. Tang, Active control of SDF systems using artificial neural networks. Comput. Struct. 60(5), 695–703 (1996)

    Article  MATH  Google Scholar 

  38. R. Alkhatib, M.F. Golnaraghi, Active structural vibration control: a review, in The Shock and Vibration Digest, vol. 35, no. 5 (2003), pp. 367–383

    Google Scholar 

  39. M.D. Symans, M.C. Constantinou, Semi-active control of earthquake induced vibration, in World Conference on Earthquake Engineering (1996)

    Google Scholar 

  40. A.K. Agrawal, J.N. Yang, Compensation of time-delay for control of civil engineering structures. J. Earthq. Eng. Struct. Dyn. 29(1), 37–62 (2000)

    Article  Google Scholar 

  41. F. Amini, M.R. Tavassoli, Optimal structural active control force, number and placement of controllers. Eng. Struct. 27(9), 1306–1316 (2005)

    Article  Google Scholar 

  42. O.I. Obe, Optimal actuators placements for the active control of flexible structures. J. Math. Analy. Appl. 105(1), 12–25 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Gawronski, Actuator and sensor placement for structural testing and control. J. Sound Vibr. 208(1), 101–109 (1997)

    Article  Google Scholar 

  44. J.M. Angeles-Cervantes, L. Alvarez-Icaza, 3D Identification of buildings seismically excited, in 16th IFAC World Congress, vol. 16, Czech Republic (2005)

    Google Scholar 

  45. B. Wu, J.P. Ou, T.T. Soong, Optimal placement of energy dissipation devices for three-dimensional structures. Eng. Struct. 19(2), 113–125 (1997)

    Article  Google Scholar 

  46. R. Guclu, Sliding mode and PID control of a structural system against earthquake. Math. Comput. Modell. 44(1–2), 210–217 (2006)

    Article  MATH  Google Scholar 

  47. I.J. Vial, J.C. de la Llera, J.L. Almazan, V. Ceballos, Torsional balance of plan-asymmetric structures with frictional dampers: experimental results. Earthq. Eng. Struct. Dyn. 35(15), 1875–1898 (2006)

    Article  Google Scholar 

  48. O. Yoshida, S.J. Dyke, L.M. Giacosa, K.Z. Truman, Experimental verification on torsional response control of asymmetric buildings using MR dampers. Earthq. Eng. Struct. Dyn. 32(13), 2085–2105 (2003)

    Article  Google Scholar 

  49. C.-M. Chang, B.F. Spencer Jr., P. Shi, Multiaxial active isolation for seismic protection of buildings, in Structural Control and Health Monitoring, vol. 21 (2014), pp.484–502

    Google Scholar 

  50. H. Adeli, A. Saleh, Optimal control of adaptive/smart bridge structures. J. Struct. Eng. 123(2), 218 –226 (1997)

    Google Scholar 

  51. R.E. Christenson, B.F. Spencer Jr., N. Hori, K. Seto, Coupled building control using acceleration feedback, in Computer-Aided Civil and Infrastructure Engineering, vol. 18, no. 1 (2003), pp. 4–18

    Google Scholar 

  52. Y. Du, Z. Lin, Sequential optimal control for serially connected isolated structures subject to two-directional horizontal earthquake, in Control and Automation (ICCA), Xiamen (2010), pp. 1508–1511

    Google Scholar 

  53. V.I. Utkin, Sliding Modes in Control and Optimization (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  54. T. Fujinami, Y. Saito, M. Morishita, Y. Koike, K. Tanida, A hybrid mass damper system controlled by H\(^{_{\infty }}\) control theory for reducing bending—torsion vibration of an actual building. Earthq. Eng. Struct. Dyn. 30(11), 1639–1653 (2001)

    Google Scholar 

  55. Z. Li, S. Wang, Robust optimal H\(^{_{\infty }}\) control for irregular buildings with AMD via LMI approach, in Nonlinear Analysis: Modelling and Control, vol. 19, no. 2 (2014), pp. 256–271

    Google Scholar 

  56. C.C. Lin, C.C. Chang, J.F. Wang, Active control of irregular buildings considering soil–structure interaction effects, in Soil Dynamics and Earthquake Engineering, vol. 30, no. 3 (2010), pp. 98–109

    Google Scholar 

  57. T.H. Nguyen, N.M. Kwok, Q.P. Ha, J. Li, B. Samali, Adaptive sliding mode control for civil structures using magnetorheological dampers, in International Symposium on Automation and Robotics in Construction (2006)

    Google Scholar 

  58. K. Iwamoto, K. Yuji, K. Nonami, K. Tanida, I. Iwasaki, Output feedback sliding mode control for bending and torsional vibration control of 6-story flexible structure. JSME Int. J. Ser. C 45(1), 150–158 (2002)

    Article  Google Scholar 

  59. J. Ghaboussi, A. Joghataie, Active control of structures using neural networks. J. Eng. Mech. 121(4), 555–567 (1995)

    Article  Google Scholar 

  60. X. Jiang, H. Adeli, Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildings. Int. J. Numer. Methods Eng. 71(5), 606–629 (2007)

    Article  MATH  Google Scholar 

  61. K. Bani-Hani, J. Ghaboussi, Nonlinear structural control using neural networks. J. Eng. Mech. 24(3), 319–327 (1998)

    Article  Google Scholar 

  62. J.T. Kim, H.J. Jung, I.W. Lee, Optimal structural control using neural networks. J. Eng. Mech. 126(2), 201–205 (2000)

    Article  Google Scholar 

  63. S. Suresh, S. Narasimhan, S. Nagarajaiah, Direct adaptive neural controller for the active control of nonlinear base-isolated buildings, in Structural Control and Health Monitoring, vol. 19, no. 3 (2011), pp. 370–384

    Google Scholar 

  64. N.D. Lagaros, V. Plevris, M. Papadrakakis, Neurocomputing strategies for solving reliability-robust design optimization problems. Eng. Comput. 27(7), 819–840 (2010)

    Google Scholar 

  65. N.D. Lagaros, M. Fragiadakis, Fragility assessment of steel frames using neural networks. Earthq. Spectra 23(4), 735–752 (2007)

    Article  Google Scholar 

  66. N.D. Lagaros, M. Papadrakakis, Neural network based prediction schemes of the non-linear seismic response of 3D buildings. Adv. Eng. Softw. 44(1), 92–115 (2012)

    Article  Google Scholar 

  67. J. Wang, C. Zhang, H. Zhu, X. Huang, L. Zhang, RBF Nonsmooth control method for vibration of building structure with actuator failure. Complexity 2017, Article ID 2513815, 7 p (2017)

    Google Scholar 

  68. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  69. D.A. Shook, P.N. Roschke, P.Y. Lin, C.H. Loh, Semi-active control of a torsionally-responsive structure. Eng. Struct. 31(1), 57–68 (2009)

    Article  Google Scholar 

  70. D.A. Shook, P.N. Roschke, P.Y. Lin, C.H. Loh, GA-optimized fuzzy logic control of a large-scale building for seismic loads. Eng. Struct. 30(2), 436–449 (2008)

    Article  Google Scholar 

  71. D.G. Reigles, M.D. Symans, Supervisory fuzzy control of a base-isolated benchmark building utilizing a neuro-fuzzy model of controllable fluid viscous dampers, in Structural Control and Health Monitoring, vol. 13, no. 2–3 (2006), pp. 724–747

    Google Scholar 

  72. H. Adeli, X. Jiang, Dynamic fuzzy wavelet neural network model for structural system identification. J. Struct. Eng. 132(1), 102–111 (2006)

    Article  Google Scholar 

  73. J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, 1975)

    Google Scholar 

  74. C. Camp, S. Pezeshk, G. Cao, Optimized design of two-dimensional structures using a genetic algorithm. J. Struct. Eng. 124(5), 551–559 (1998)

    Article  Google Scholar 

  75. H.N. Li, X.L. Li, Experiment and analysis of torsional seismic responses for asymmetric structures with semi-active control by MR dampers. Smart Mater. Struct. 18(7) (2009)

    Google Scholar 

  76. X. Jiang, H. Adeli, Neuro-genetic algorithm for non-linear active control of structures. Int. J. Numer. Methods Eng. 75(7), 770–786 (2008)

    Article  MATH  Google Scholar 

  77. O. Yoshida, S.J. Dyke, Response control of full-scale irregular buildings using magnetorheological dampers. J. Struct. Eng. 131(5), 734–742 (2005)

    Article  Google Scholar 

  78. H.N. Li, Z.G. Chang, G.B. Song, D.S. Li, Studies on structural vibration control with MR dampers using GA, in American Control Conference, vol. 6, Boston, MA (2004), pp. 5478–5482

    Google Scholar 

  79. Y. Arfiadi, M.N.S. Hadi, Passive and active control of three-dimensional buildings. Earthq. Eng. Struct. Dyn. 29(3), 377–396 (2000)

    Article  Google Scholar 

  80. W.A. Crossley, A.M. Cook, D.W. Fanjoy, V.B. Venkayya, Using the two branch tournament genetic algorithm for multiobjective design. AIAA J. 37(2), 261–267 (1999)

    Article  Google Scholar 

  81. H.-N. Li, L.-S. Huo, Optimal design of liquid dampers for torsionally coupled vibration of structures. Intell. Control Autom. 5, 4535–4538 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, W., Paul, S. (2020). Active Structure Control. In: Active Control of Bidirectional Structural Vibration. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46650-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46650-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46649-7

  • Online ISBN: 978-3-030-46650-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics