Skip to main content

Brain Tumor Segmentation Based on Attention Mechanism and Multi-model Fusion

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Included in the following conference series:

Abstract

Brain tumor are uncontrollable and abnormal cells in the brain. The incidence and mortality of brain tumors are very high. Among them, gliomas are the most common primary malignant tumors with different degrees of invasion. The segmentation of brain tumors is a prerequisite for disease diagnosis, surgical planning and prognosis. According to the characteristics of brain tumor data, we designed a multi-model fusion brain tumor automatic segmentation algorithm based on attention mechanism [1]. Our network architecture is slightly modified based on 3D U-Net [2]. At the same time, the attention mechanism was added to the 3D U-Net model. According to the patch size and attention mechanism in the training process, four independent networks are designed. Here, we use 64 × 64 × 64 and 128 × 128 × 128 patch sizes to train different sub-networks. Finally, the results of the four models in the label layer are combined to get the final segmentation results. This multi model fusion method can effectively improve the robustness of the algorithm. At the same time, the attention method can improve the feature extraction ability of the network and improve the segmentation accuracy. Our experimental study on the newly released brats data set (brats 2019) shows that our method accurately describes brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation (2015). CoRR, abs/1505.04597. http://arxiv.org/abs/1505.04597

  3. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)

    Article  Google Scholar 

  4. Louis, D., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)

    Article  Google Scholar 

  5. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  6. Udupa, J.K., et al.: Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans. Med. Imag. 16(5), 598–609 (1997)

    Article  Google Scholar 

  7. Udupa, J.K., et al.: Relative fuzzy connectedness and object definition: theory, algorithms, and application in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1485–1500 (2002)

    Article  Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 3431–3440 (2015)

    Google Scholar 

  9. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  10. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  11. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  12. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  13. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Key Research and Development Program of China (2018YFC1312000), The Basic Research Foundation Key Project Track of Shenzhen Science and Technology Program (JCYJ20160509162237418, JCYJ20170413110656460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, X. et al. (2020). Brain Tumor Segmentation Based on Attention Mechanism and Multi-model Fusion. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics