Skip to main content

The Tumor Mix-Up in 3D Unet for Glioma Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Abstract

Automated segmentation of glioma and its subregions has significant importance throughout the clinical work flow including diagnosis, monitoring and treatment planning of brain cancer. The automatic delineation of tumours have draw much attention in the past few years, particularly the neural network based supervised learning methods. While the clinical data acquisition is much expensive and time consuming, which is the key limitation of machine learning in medical data. We describe a solution for the brain tumor segmentation in the context of the BRATS19 challenge. The major learning scheme is based on the 3D-Unet encoder and decoder with intense data augmentation followed by bias correction. At the moment we submit this short paper, our solution achieved Dice scores of 76.84, 85.74 and 74.51 for the enhancing tumor, whole tumor and tumor core, respectively on the validation data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(July), 1–13 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  2. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629 (2018). http://arxiv.org/abs/1811.02629

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Furnari, F.B., et al.: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21(21), 2683–2710 (2007). https://doi.org/10.1101/gad.1596707

    Article  Google Scholar 

  5. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-Cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2011)

    Article  Google Scholar 

  6. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)

    Google Scholar 

  7. Havaei, M., Larochelle, H., Poulin, P., Jodoin, P.-M.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg. 11(5), 777–788 (2015). https://doi.org/10.1007/s11548-015-1311-1

    Article  Google Scholar 

  8. Isensee, F., Maier-Hein, K.H.: An attempt at beating the 3D U-Net. arXiv preprint arXiv:1908.02182 (2019)

  9. Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H.: nnU-Net: breaking the spell on successful medical image segmentation. arXiv preprint arXiv:1904.08128 (2019)

  10. Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)

    Article  MathSciNet  Google Scholar 

  11. Liang, Z.P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. SPIE Optical Engineering Press, Bellingham (2000)

    Google Scholar 

  12. Mazumdar, I.: Automated brain tumour segmentation using deep fully convolutional residual networks. arXiv preprint arXiv:1908.04250 (2019)

  13. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  14. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  17. Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13(2), 209–225 (2015). https://doi.org/10.1007/s12021-014-9245-2

    Article  Google Scholar 

  18. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 61605014) and the Fundamental Research Funds for the Central Universities (Grant No. 2018RC17 and 2018RC18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, P., Hu, Y., Liu, J., Duan, J., Yang, W., Cheng, K. (2020). The Tumor Mix-Up in 3D Unet for Glioma Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics