Skip to main content

Multimodal Brain Image Segmentation and Analysis with Neuromorphic Attention-Based Learning

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Included in the following conference series:

Abstract

Automated image analysis of brain tumors from 3D Magnetic Resonance Imaging (MRI) is necessary for the diagnosis and treatment planning of the disease, because manual practices of segmenting tumors are time consuming, expensive and can be subject to clinician diagnostic error. We propose a novel neuromorphic attention-based learner (NABL) model to train the deep neural network for tumor segmentation, which is with challenges of typically small datasets and the difficulty of exact segmentation class determination. The core idea is to introduce the neuromorphic attention to guide the learning process of deep neural network architecture, providing the highlighted region of interest for tumor segmentation. The neuromorphic convolution filters mimicking visual cortex neurons are adopted for the neuromorphic attention generation, transferred from the pre-trained neuromorphic convolutional neural networks(CNNs) for adversarial imagery environments. Our pre-trained neuromorphic CNN has the feature extraction ability applicable to brain MRI data, verified by the overall survival prediction without the tumor segmentation training at Brain Tumor Segmentation (BraTS) Challenge 2018. NABL provides us with an affordable solution of more accurate and faster image analysis of brain tumor segmentation, by incorporating the typical encoder-decoder U-net architecture of CNN. Experiment results illustrated the effectiveness and feasibility of our proposed method with flexible requirements of clinical diagnostic decision data, from segmentation to overall survival prediction. The overall survival prediction accuracy is 55% for predicting overall survival period in days, based on the BraTS 2019 validation dataset, while 48.6% based on the BraTS 2019 test dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White, N., Reid, F., Harris, A., Harries, P., Stone, P.: A systematic review of predictions of survival in palliative care: how accurate are clinicians and who are the experts? PLoS ONE 11(8), e0161407 (2016)

    Article  Google Scholar 

  2. Cheon, S., et al.: The accuracy of clinicians’ predictions of survival in advanced cancer: a review. Ann. Palliat. Med. 5(1), 22–29 (2016). https://doi.org/10.3978/j.issn.2224-5920.2015.08.04

    Article  Google Scholar 

  3. Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  4. Bakas S., Akbari H., Sotrias A., Bilello M., Rozycki M., Kirby J., et al: Data descriptor: advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 117 (2017) https://doi.org/10.1038/sdata.2017.117

  5. Bakas S., Reyes M., Jakab A., Bauer S., Rempfler M., Crimi A., et al: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge, arXivpreprint arXiv:1811.02629.2018 (2018)

  6. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  7. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  8. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–68 (2017)

    Article  Google Scholar 

  9. Dalca, A., Guttag, J., Sabuncu, M.: Anatomical priors in convolutional neural networks for unsupervised biomedical segmentation. In: Proceedings of CVPR, pp. 9290–9299 (2018)

    Google Scholar 

  10. Chen, X., Liew, J., Xiong, W., Chui, C., Ong, S.: Segment and erase: an efficient network for multi-label brain tumor segmentation. In: Proceedings of ECCV (2018)

    Google Scholar 

  11. Gorji, S., Clark, J.: Going from image to video saliency: augmenting image salience with dynamic attentional push. In: Proceedings of CVPR (2018)

    Google Scholar 

  12. Woo, S., Park, J., Lee, J., Kweon, I.: CBAM: convolutional block attention module. In: Proceedings of ECCV (2018)

    Google Scholar 

  13. Lim, J., Yoo, Y., Heo, B., Choi, J.: Pose transforming network: learning to disentangle human posture in variational auto-encoded latent space. Pattern Recogn. Lett. 112, 91–97 (2018)

    Article  Google Scholar 

  14. Liu J., Gao C., Meng D., Hauptmann A.: DecideNet: counting varying density crowds through attention guided detection and density estimation. In: Proceedings of CVPR (2018)

    Google Scholar 

  15. Xu, X., et al.: Quantization of fully convolutional networks for accurate biomedical image segmentation. In: Proceedings of CVPR, pp. 8300–8308 (2018)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR (2015)

    Google Scholar 

  17. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Proceedings of Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  18. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.: Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge, arXiv:1802.10508v [cs.CV] (2018)

  19. Sun, L., Zhang, S., Chen, H., Luo, L.: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, Article 810 (2019)

    Google Scholar 

  20. Myronrnko, A.: 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization, arXiv preprint arXiv:1810.11654v3 (2018)

  21. Han, W.-S., Han, I.S.: Object segmentation for vehicle video and dental CBCT by neuromorphic convolutional recurrent neural network. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. SCI, vol. 751, pp. 264–284. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69266-1_13

    Chapter  Google Scholar 

  22. Han, W.-S., Han, I.S.: Neuromorphic neural network for multimodal brain image segmentation and overall survival analysis. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 178–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Song Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, WS., Han, I.S. (2020). Multimodal Brain Image Segmentation and Analysis with Neuromorphic Attention-Based Learning. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics