Skip to main content

Fully Automated Brain Tumor Segmentation and Survival Prediction of Gliomas Using Deep Learning and MRI

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Abstract

Tumor segmentation of magnetic resonance images is a critical step in providing objective measures of predicting aggressiveness and response to therapy in gliomas. It has valuable applications in diagnosis, monitoring, and treatment planning of brain tumors. The purpose of this work was to develop a fully-automated deep learning method for tumor segmentation and survival prediction. Well curated brain tumor cases with multi-parametric MR Images from the BraTS2019 dataset were used. A three-group framework was implemented, with each group consisting of three 3D-Dense-UNets to segment whole-tumor (WT), tumor-core (TC) and enhancing-tumor (ET). Each group was trained using different approaches and loss-functions. The output segmentations of a particular label from their respective networks from the three groups were ensembled and post-processed. For survival analysis, a linear regression model based on imaging texture features and wavelet texture features extracted from each of the segmented components was implemented. The networks were tested on both the BraTS2019 validation and testing datasets. The segmentation networks achieved average dice-scores of 0.901, 0.844 and 0.801 for WT, TC and ET respectively on the validation dataset and achieved dice-scores of 0.877, 0.835 and 0.803 for WT, TC and ET respectively on the testing dataset. The survival prediction network achieved an accuracy score of 0.55 and mean squared error (MSE) of 119244 on the validation dataset and achieved an accuracy score of 0.51 and MSE of 455500 on the testing dataset. This method could be implemented as a robust tool to assist clinicians in primary brain tumor management and follow-up.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ostrom, Q.T., Gittleman, H., Truitt, G., Boscia, A., Kruchko, C., Barnholtz-Sloan, J.S.: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20(suppl_4), iv1–iv86 (2018)

    Google Scholar 

  2. Havaei, M., Davy, A., Warde-Farley, D., et al.: Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  3. Louis, D.N., Ohgaki, H., Wiestler, O.D., et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007). https://doi.org/10.1007/s00401-007-0243-4

    Article  Google Scholar 

  4. Kleihues, P., Cavenee, W.K.: Pathology and genetics of tumours of the nervous system, vol 2. International Agency for Research on Cancer (2000)

    Google Scholar 

  5. Lacroix, M., Abi-Said, D., Fourney, D.R., et al.: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95(2), 190–198 (2001)

    Article  Google Scholar 

  6. Hakin-Smith, V., Jellinek, D., Levy, D., et al.: Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361(9360), 836–838 (2003)

    Article  Google Scholar 

  7. Johnson, D.R., O’Neill, B.P.: Glioblastoma survival in the United States before and during the temozolomide era. J. Neurooncol. 107(2), 359–364 (2012)

    Article  Google Scholar 

  8. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: MICCAI_BraTS_2018_Proceedings_shortpapers (2018)

    Google Scholar 

  9. Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)

    Article  Google Scholar 

  10. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  11. Shreyas, V., Pankajakshan, V.: A deep learning architecture for brain tumor segmentation in MRI images. In: 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), Luton, pp. 1–6 (2017)

    Google Scholar 

  12. Pei, L., Reza, S.M.S., Li, W., Davatzikos, C., Iftekharuddin, K.M.: Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI. Proc. SPIE Int. Soc. Opt. Eng. 10134 (2017)

    Google Scholar 

  13. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  14. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  15. Funke, J., Martel, J.N., Gerhard, S., et al.: Candidate sampling for neuron reconstruction from anisotropic electron microscopy volumes. Med. Image Comput. Comput. Assist. Interv. 17(Pt 1), 17–24 (2014)

    Google Scholar 

  16. Soeda, A., Hara, A., Kunisada, T., Yoshimura, S.-I., Iwama, T., Park, D.M.: The evidence of glioblastoma heterogeneity. JSR 5, 7979 (2015)

    Google Scholar 

  17. Shboul, Z.A., Vidyaratne, L., Alam, M., Iftekharuddin, K.M.: Glioblastoma and survival prediction. Paper presented at International MICCAI Brainlesion Workshop (2017)

    Google Scholar 

  18. Yang, D., Rao, G., Martinez, J., Veeraraghavan, A., Rao, A.: Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. JMP 42(11), 6725–6735 (2015)

    Google Scholar 

  19. Lee, J., Jain, R., Khalil, K., et al.: Texture feature ratios from relative CBV maps of perfusion MRI are associated with patient survival in glioblastoma. Am. J. Neuroradiol. 37(1), 37–43 (2016)

    Article  Google Scholar 

  20. Sanghani, P., Ang, B.T., King, N.K.K., Ren, H.: Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. JSO 27(4), 709–714 (2018)

    Google Scholar 

  21. Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data. 4, 170117 (2017)

    Article  Google Scholar 

  22. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. https://doi.org/10.17863/CAM.38755

  23. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/k9/tcia.2017.klxwjj1q

  24. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/k9/tcia.2017.gjq7r0ef

  25. Tustison, N.J., Cook, P.A., Klein, A., et al.: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014)

    Google Scholar 

  26. Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation (2017)

    Google Scholar 

  27. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15, 29 (2015)

    Article  Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020)

    Google Scholar 

  29. Wegmayr, V., AS, B.J., Petrick, N., Mori, K. (eds.): Classification of brain MRI with big data and deep 3D convolutional neural networks. In: Published in SPIE Proceedings, Medical Imaging 2018: Computer-Aided Diagnosis, p. 1057501 (2018)

    Google Scholar 

  30. Feng, X., Yang, J., Lipton, Z.C., Small, S.A., Provenzano, F.A.: Deep learning on MRI affirms the prominence of the hippocampal formation in Alzheimer’s disease classification. bioRxiv. 2018; 2018:456277

    Google Scholar 

  31. Van Griethuysen, J.J., Fedorov, A., Parmar, C., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Google Scholar 

  32. Lee, G.R., Gommers, R., Waselewski, F., Wohlfahrt, K., O’Leary, A.: PyWavelets: a Python package for wavelet analysis. J. Open Source Softw. 4(36), 1237 (2019)

    Google Scholar 

  33. Winger, L.L., Venetsanopoulos, A.N.: Biorthogonal nearly coiflet wavelets for image compression. JSPIC 16(9), 859–869 (2001)

    Google Scholar 

  34. Feng, X., Tustison, N., Meyer, C.: Brain tumor segmentation using an ensemble of 3d U-Nets and overall survival prediction using radiomic features. Paper presented at International MICCAI Brainlesion Workshop (2018)

    Google Scholar 

  35. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, pp. 265–284 (2016)

    Google Scholar 

  36. Charles, P.W.D.: Keras. GitHub repository (2013)

    Google Scholar 

Download references

Acknowledgement

This work was partly supported by the grant, NIH/NCI U01CA207091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Ganesh Bangalore Yogananda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bangalore Yogananda, C.G. et al. (2020). Fully Automated Brain Tumor Segmentation and Survival Prediction of Gliomas Using Deep Learning and MRI. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics