Energy Storage pp 109-135 | Cite as

Integration of Amine Scrubbing and Power to Gas



Among the different Power to Gas hybridizations proposed to improve the efficiency of PtG energy storage technology, the integration with amine scrubbing process as carbon source is the most mature option. The concept, main operation parameters and points of integration are described in the first section of this chapter. Two application cases are also presented to illustrate the real operation and efficiencies of the concept. First, an integration with electrochemical industry is presented. This configuration, which appears to be economically feasible under current scenario, avoids the typical water electrolysis stage of PtG since hydrogen is available. A second case study describes a new concept to control nuclear power production through the joint operation of a nuclear power plant, a coal power plant with amine scrubbing capture and a PtG plant. The cost effectiveness of this technology and its capability to reduce the CO2 emissions are assessed through the design and economic and environmental analysis of a hybrid facility.


  1. 1.
    D.W. Keith, Why capture CO2 from the atmosphere. Science (80) 325(5948), 1654–1655 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Benjaminsson, J. Benjaminsson, R. Boogh, Power-to-gas a technical review (2013)Google Scholar
  3. 3.
    J. Köbler, Balanced mobility. Encounter—The Audi Technology Magazine, pp. 36–41 (2011)Google Scholar
  4. 4.
    R. Otten, The first industrial PtG plant—Audi e-gas as driver for the energy turnaround, in CEDEC Gas Day 2014 (2014)Google Scholar
  5. 5.
    O. Strohbach, Audi e-gas plant stabilizes electrical grid. Press Release—Audi MediaInfo—Technology and Innovation Communications (2015)Google Scholar
  6. 6.
    M. Bailera, S. Espatolero, P. Lisbona, L.M. Romeo, Power to gas-electrochemical industry hybrid systems: a case study. Appl. Energy 202, 435–446 (2017)CrossRefGoogle Scholar
  7. 7.
    BOE, “ORDEN ITC/2794/2007. de 27 de septiembre, por la que se revisan las tarifas eléctricas a partir del 1 de octubre de 2007, 234, 39690–39698 (2007)Google Scholar
  8. 8.
    Ministerio de Industria Energía y Turismo, “Orden IET/2444/2014. de 19 de diciembre, por la que se determinan los peajes de acceso de energía eléctrica para 2015,” BOE (2014)Google Scholar
  9. 9.
    M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016)CrossRefGoogle Scholar
  10. 10.
    E. C. J. Hohmann, Optimum Networks for Heat Exchange, University of Southern California (1971)Google Scholar
  11. 11.
    B. Linnhoff, J. Flower, Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. II. Evolutionary generation of networks with various criteria of optimality. AIChE J. 24, 633–654 (1978)CrossRefGoogle Scholar
  12. 12.
    C. Alie, L. Backham, E. Croiset, P.L. Douglas, Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energy Convers. Manag. 46(3), 475–487 (2005)CrossRefGoogle Scholar
  13. 13.
    J.K. Carson, K.N. Marsh, A.E. Mather, Enthalpy of solution of carbon dioxide in (water + monoethanolamine, or diethanolamine, or N-methyldiethanolamine) and (water + monoethanolamine + N-methyldiethanolamine) at T = 298.15 Ka. J. Chem. Thermodyn. 32(9), 1285–1296 (2000)CrossRefGoogle Scholar
  14. 14.
    F.-Y. Jou, F.D. Otto, A.E. Mather, Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine. Ind. Eng. Chem. Res. 33(8), 2002–2005 (1994)CrossRefGoogle Scholar
  15. 15.
    M.R.M. Abu-Zahra, L.H.J. Schneiders, J.P.M. Niederer, P.H.M. Feron, G.F. Versteeg, CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine. Int. J. Greenh. Gas Control 1(1), 37–46 (2007)CrossRefGoogle Scholar
  16. 16.
    W. Zhang, H. Liu, Y. Sun, J. Cakstins, C. Sun, C.E. Snape, Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture. Appl. Energy 168, 394–405 (2016)CrossRefGoogle Scholar
  17. 17.
    F. Shakerian, K.H. Kim, J.E. Szulejko, J.W. Park, A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl. Energy 148, 10–22 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89(8), 1763–1783 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Bailera, P. Lisbona, L.M. Romeo, S. Espatolero, Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew. Sustain. Energy Rev. 69, 292–312 (2017)CrossRefGoogle Scholar
  20. 20.
    M.R.M. Abu-Zahra, J.P.M. Niederer, P.H.M. Feron, G.F. Versteeg, CO2 capture from power plants. Part II. A parametric study of the economical performance based on mono-ethanolamine. Int. J. Greenh. Gas Control 1(2), 135–142 (2007)CrossRefGoogle Scholar
  21. 21.
    Jean M. De Saint, P. Baurens, C. Bouallou, K. Couturier, Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. Int. J. Hydrogen Energy 40(20), 6487–6500 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Lehner, R. Tichler, M. Koppe, Power-to-Gas : Technology and Business Model. Springer (2014)Google Scholar
  23. 23.
    S.M. Ali, J. Andrews, Low-cost hydrogen storage options for solar hydrogen systems for remote area power supply, in World Hydrogen Energy Conference (2006)Google Scholar
  24. 24.
    M. Bailera, P. Lisbona, L.M. Romeo, Avoidance of partial load operation at coal-fired power plants by storing nuclear power through power to gas. Int. J. Hydr. Energy 44(47), 26063–26075 (2019)CrossRefGoogle Scholar
  25. 25.
    J. Shi, Y. Wang, Reliability prediction and its validation for nuclear power units in service. 16th World Hydr. Energy Conf. 10(4), 479–488 (2016)Google Scholar
  26. 26.
    M.A. Gonzalez-Salazar, T. Kirsten, L. Prchlik, Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew. Sustain. Energy Rev 82(7), 1497–1513 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Cany, C. Mansilla, G. Mathonnière, P. da Costa, Nuclear power supply: Going against the misconceptions. Evidence of nuclear flexibility from the French experience. Energy 151, 289–296 (2018)CrossRefGoogle Scholar
  28. 28.
    Consejo de Seguridad Nuclear, Monografico: El combustible nuclear y su ciclo - Recarga de combustible (2012)Google Scholar
  29. 29.
    S. Belošević, I. Tomanović, N. Crnomarković, A. Milićević, D. Tucaković, Numerical study of pulverized coal-fired utility boiler over a wide range of operating conditions for in-furnace SO2/NOx reduction. Appl. Therm. Eng. 94, 657–669 (2016)CrossRefGoogle Scholar
  30. 30.
    DOCE Diario Oficial de la Unión Europea, Directiva 2010/75/UE, sobre las emisiones industriales. D. of. la Unión Eur. (2010), pp. 17–119Google Scholar
  31. 31.
    M. Bailera, Almacenamiento híbrido de energía y CO2: Análisis económico y medioambiental de un sistema Power to Gas de metanización catalítica (Master’s Thesis), Universidad de Zaragoza (2014)Google Scholar
  32. 32.
    Energía 2015, Foro de la Industria Nuclear Española, (2015)Google Scholar
  33. 33.
    Asociación Española de la Industria Eléctrica, Informe UNESA 2013 (2013)Google Scholar
  34. 34.
    REE’s annual reports 2008–2013 Informe del Sistema Eléctrico español (2014)Google Scholar
  35. 35.
    OMIE, Operador del Mercado Ibérico Español—Resultados del Mercado—Ficheros (2013)Google Scholar
  36. 36.
    S. Linnenber, J. Oexmann, A. Kather, Design considerations of post-combustion CO2 capture process during part load operation of coal-fired power plants, in 12th International Post Combustion Capture Network Meeting (2009)Google Scholar
  37. 37.
    Ministerio de Industria Energía y Turismo, Factores de emisión de CO2 y coeficientes de paso a energía primaria de diferentes fuentes de energía final consumidas en el sector de edificios en España (2016)Google Scholar
  38. 38.
    DesignBuilder, Biolers—Normalized Boiler Efficiency Performance Curve (2018)Google Scholar
  39. 39.
    L.M. Ferrer, Revisión de absorbentes químicos en post-combustión y comparativa del requerimiento energético en el desorbedor para diferentes configuraciones (Master’s Thesis), Universidad de Zaragoza (2013)Google Scholar
  40. 40.
    L.F. Chiu, M.H. Li, Heat capacity of alkanolamine aqueous solutions. J. Chem. Eng. Data 44(6), 1396–1401 (1999)CrossRefGoogle Scholar
  41. 41.
    A. Padurean, C.C. Cormos, A.M. Cormos, P.S. Agachi, Multicriterial analysis of post-combustion carbon dioxide capture using alkanolamines. Int. J. Greenh. Gas Control 5(4), 676–685 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Bailera, P. Lisbona, L.M. Romeo, Power to gas-oxyfuel boiler hybrid systems. Int. J. Hydrogen Energy 40, 32 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Bailera, N. Kezibri, L.M. Romeo, S. Espatolero, P. Lisbona, C. Bouallou, Future applications of hydrogen production and CO2 utilization for energy storage: hybrid power to gas-oxycombustion power plants. Int. J. Hydrogen Energy 42, 13625 (2017)CrossRefGoogle Scholar
  44. 44.
    Comisión Nacional de Energía, Informe complementario a la propuesta de revisión de la tarifa eléctrica a partir del 1 de julio de 2008. Precios y costes de la generación de electricidad (2008)Google Scholar
  45. 45.
    M. Bailera, S. Espatolero, P. Lisbona, L.M. Romeo, Power to gas-electrochemical industry hybrid systems: A case study. Appl. Energy 202, 435 (2017)CrossRefGoogle Scholar
  46. 46.
    M. Hurskainen, S. Kouri, J. Kärki, Workshop ‘Possibilities for CCU’ in BioCO2—Value chains and business potential for biobased-CO2 in circular economy (2017)Google Scholar
  47. 47.
    M. Hurskainen, Industrial oxygen demand in Finland—NEOCARBON ENERGY Project (2017)Google Scholar
  48. 48.
    C. Song, P. Wang, H.A. Makse, A phase diagram for jammed matter. Nature 32, 453–629 (2008)Google Scholar
  49. 49.
    J. Proost, State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings. Int. J. Hydr. Energy (2018)Google Scholar
  50. 50.
    Y.-L. Kao, P.-H. Lee, Y.-T. Tseng, I.-L. Chien, J.D. Ward, Design, control and comparison of fixed-bed methanation reactor systems for the production of substitute natural gas. J. Taiwan Inst. Chem. Eng. 45(5), 2346–2357 (2014)CrossRefGoogle Scholar
  51. 51.
    M. Peters, K. Timmerhaus, W. Ronald, Plant Design and Economics for Chemical Engineers, 5th ed. McGraw-Hill (2003)Google Scholar
  52. 52.
    U. Desideri, A. Paolucci, Performance modelling of a carbon dioxide removal system for power plants. Energy Convers. Manag. 40(18), 1899–1915 (1999)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of Engineering and ArchitectureUniversity of ZaragozaZaragozaSpain
  2. 2.Aragonese Foundation for Research & Development (ARAID)ZaragozaSpain

Personalised recommendations