Advertisement

Integration of Oxy-Fuel Combustion and Power to Gas

Chapter
  • 398 Downloads

Abstract

Some remarkable hybridizations to enhance Power to Gas are those that avoid carbon capture penalties. A suitable option to this end is the hybridization of PtG with an oxy-fuel combustion process. In oxy-fuel combustion, pure oxygen is used as comburent instead of air. Conventionally, requiring an air separation unit to produce the oxygen leads to a strong penalty. However, electrolysis in PtG by-produces oxygen, which can be supplied to the oxy-fuel combustion thus avoiding the penalty. Three case studies of this integration are presented in the chapter: a small oxy-fuel combined cycle, a district heating system and a cogeneration system for large urban buildings.

References

  1. 1.
    M. Bailera, D.P. Hanak, P. Lisbona, L.M. Romeo, Techno-economic feasibility of power to gas–oxy-fuel boiler hybrid system under uncertainty. Int. J. Hydrogen Energy 44, 9505–9516 (2019).  https://doi.org/10.1016/j.ijhydene.2018.09.131CrossRefGoogle Scholar
  2. 2.
    Y. Hu, X. Li, H. Li, J. Yan, Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems. Appl. Energy 112, 747–754 (2013).  https://doi.org/10.1016/j.apenergy.2012.12.001CrossRefGoogle Scholar
  3. 3.
    A.S. Tijani, N.A.B. Yusup, A.H.A. Rahim, Mathematical modelling and simulation analysis of advanced alkaline electrolyzer system for hydrogen production. Procedia Technol. 15, 799–807 (2014).  https://doi.org/10.1016/j.protcy.2014.09.053CrossRefGoogle Scholar
  4. 4.
    P. Dieguez, A. Ursua, P. Sanchis, C. Sopena, E. Guelbenzu, L. Gandia, Thermal performance of a commercial alkaline water electrolyzer: experimental study and mathematical modeling. Int. J. Hydrogen Energy. 33, 7338–7354 (2008).  https://doi.org/10.1016/j.ijhydene.2008.09.051CrossRefGoogle Scholar
  5. 5.
    J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89, 1763–1783 (2010).  https://doi.org/10.1016/j.fuel.2010.01.027CrossRefGoogle Scholar
  6. 6.
    BOE-A-2013-185, Resolución de 21 de diciembre de 2012, de la Dirección General de Política Energética y Minas, por la que se modifica el protocolo de detalle PD-01, Ministerio de Industria, Energía y Turismo (2013)Google Scholar
  7. 7.
    T.T.M. Nguyen, L. Wissing, M.S. Skjøth-Rasmussen, High temperature methanation: catalyst considerations. Catal. Today 215, 233–238 (2013).  https://doi.org/10.1016/j.cattod.2013.03.035CrossRefGoogle Scholar
  8. 8.
    K. Pedersen, J. Sehested, High temperature methanation. Sintering and structure sensitivity. Appl. Catal. A. Gen. 330, 134–138 (2007).  https://doi.org/10.1016/j.apcata.2007.07.015CrossRefGoogle Scholar
  9. 9.
    S. Heyne, M.C. Seemann, S. Harvey, Integration study for alternative methanation technologies for the production of synthetic natural gas from gasified biomass. Chem. Eng. Trans. 21, 409–414 (2010).  https://doi.org/10.3303/CET1021069CrossRefGoogle Scholar
  10. 10.
    J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2, 2358 (2012).  https://doi.org/10.1039/c2ra00632dCrossRefGoogle Scholar
  11. 11.
    J. Agersborg, E. Lingehed, Integration of Power-to-Gas in Gasendal and GoBiGas (Chalmers University of Technology, 2013). http://publications.lib.chalmers.se/records/fulltext/182610/182610.pdf
  12. 12.
    M. Bailera, P. Lisbona, L.M. Romeo, S. Espatolero, Power to Gas–biomass oxycombustion hybrid system: energy integration and potential applications. Appl. Energy 167, 221–229 (2016).  https://doi.org/10.1016/j.apenergy.2015.10.014CrossRefGoogle Scholar
  13. 13.
    F. Climent Barba, G. Martínez-denegri Sánchez, B. Soler Seguí, H. Gohari Darabkhani, E. John Anthony, A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. J. Clean. Prod. 133, 971–985 (2016).  https://doi.org/10.1016/j.jclepro.2016.05.189CrossRefGoogle Scholar
  14. 14.
    S. Sharma, S.K. Ghoshal, Hydrogen the future transportation fuel: from production to applications. Renew. Sustain. Energy Rev. 43, 1151–1158 (2015).  https://doi.org/10.1016/j.rser.2014.11.093CrossRefGoogle Scholar
  15. 15.
    M. Bailera, N. Kezibri, L.M. Romeo, S. Espatolero, P. Lisbona, C. Bouallou, Future applications of hydrogen production and CO2 utilization for energy storage: Hybrid Power to Gas-Oxycombustion power plants, Int. J. Hydrogen Energy. 1–8 (2017).  https://doi.org/10.1016/j.ijhydene.2017.02.123
  16. 16.
    M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J. Amann, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO capture. Appl. Therm. Eng. 30, 53 (2009)CrossRefGoogle Scholar
  17. 17.
    Jean M. De Saint, P. Baurens, C. Bouallou, K. Couturier, Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. Int. J. Hydrogen Energy 40, 6487–6500 (2015).  https://doi.org/10.1016/j.ijhydene.2015.03.066CrossRefGoogle Scholar
  18. 18.
    D. Ferrero, M. Gamba, A. Lanzini, M. Santarelli, Power-to-Gas Hydrogen: techno-economic assessment of processes towards a multi-purpose energy carrier. Energy Procedia 101, 50–57 (2016).  https://doi.org/10.1016/j.egypro.2016.11.007CrossRefGoogle Scholar
  19. 19.
    T. Nussbaumer, S. Thalmann, Status Report on District Heating Systems in IEA Countries (2014)Google Scholar
  20. 20.
    M. Bailera, B. Peña, P. Lisbona, L.M. Romeo, Decision-making methodology for managing photovoltaic surplus electricity through power to gas: combined heat and power in urban buildings. Appl. Energy 228, 1032–1045 (2018).  https://doi.org/10.1016/j.apenergy.2018.06.128CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of Engineering and ArchitectureUniversity of ZaragozaZaragozaSpain
  2. 2.Aragonese Foundation for Research & Development (ARAID)ZaragozaSpain

Personalised recommendations