Advertisement

The Role of Energy Storage and Carbon Capture in Electricity Markets

Chapter
  • 497 Downloads

Abstract

Carbon capture and energy storage technologies will play an important role in the future energy system under high share of renewable electricity generation. This chapter reviews the energy storage technologies, with special attention to the potential use in electricity grid services, and the current status of CO2 capture technologies. The Power to Fuel concept emerges as the natural bridge between energy and CO2 storage and integrates in a smart energy system to all the involved sectors: power, transport, building and industry.

References

  1. 1.
    NASA Goddard Institute for Space Studies, in GISS Surface Temperature Analysis (GISTEMP) (2017)Google Scholar
  2. 2.
    Intergovernmental Panel on Climate Change, in Climate change 2014—Synthesis Report (2014)Google Scholar
  3. 3.
    Scripps Institution of Oceanography, in The Keeling Curve (2017)Google Scholar
  4. 4.
    T.R. Anderson, E. Hawkins, P.D. Jones, CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40(3), 178–187 (2016).  https://doi.org/10.1016/j.endeavour.2016.07.002CrossRefGoogle Scholar
  5. 5.
    International Energy Agency, in CO2 Emissions from Fuel Combustion (2015)Google Scholar
  6. 6.
    International Energy Agency IEA, in CO2 Emissions Statistics (2018)Google Scholar
  7. 7.
    European Parliament, in Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 (2009)Google Scholar
  8. 8.
    Eurostat, in Greenhouse Gas Emissions by Sector (source: EEA) (code: tsdcc210).”Google Scholar
  9. 9.
    Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—Renewable energy progress report, European Commission (2015)Google Scholar
  10. 10.
    P. Capros et al., EU reference scenario 2016: energy, transport and GHG emissions. Trends to 2050. European Union (2016)Google Scholar
  11. 11.
    European Commission, in Commission Staff Working Document: Energy Storage—The Role of Electricity (2017)Google Scholar
  12. 12.
    Eurostat, Share of energy from renewable sources (code: nrg_ind_335a) (2018).Google Scholar
  13. 13.
    Eurostat, Supply, transformation and consumption of electricity—annual data (code: nrg_105a) (2018)Google Scholar
  14. 14.
    I. Pierre et al., in Flexible Generation: Backing Up Renewables (2011)Google Scholar
  15. 15.
    A.Q. Gilbert, B.K. Sovacool, Benchmarking natural gas and coal-fired electricity generation in the United States. Energy 134, 622–628 (2017).  https://doi.org/10.1016/j.energy.2017.05.194CrossRefGoogle Scholar
  16. 16.
    H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv, Thermal energy storage: recent developments and practical aspects. Prog. Energy Combust. Sci. 53, 1–40 (2016).  https://doi.org/10.1016/j.pecs.2015.10.003CrossRefGoogle Scholar
  17. 17.
    M. Aneke, M. Wang, Energy storage technologies and real life applications—a state of the art review. Appl. Energy 179, 350–377 (2016).  https://doi.org/10.1016/j.apenergy.2016.06.097CrossRefGoogle Scholar
  18. 18.
    G.L. Kyriakopoulos, G. Arabatzis, Electrical energy storage systems in electricity generation: energy policies, innovative technologies, and regulatory regimes. Renew. Sustain. Energy Rev. 56, 1044–1067 (2016).  https://doi.org/10.1016/j.rser.2015.12.046CrossRefGoogle Scholar
  19. 19.
    H. Chen, T. Ngoc, W. Yang, C. Tan, Y. Li, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009).  https://doi.org/10.1016/j.pnsc.2008.07.014CrossRefGoogle Scholar
  20. 20.
    A. Tafone, A. Romagnoli, E. Borri, G. Comodi, New parametric performance maps for a novel sizing and selection methodology of a liquid air energy storage system. Appl. Energy 250(May), 1641–1656 (2019).  https://doi.org/10.1016/j.apenergy.2019.04.171CrossRefGoogle Scholar
  21. 21.
    F. Nadeem, S.M.S. Hussain, P.K. Tiwari, A.K. Goswami, T.S. Ustun, Comparative review of energy storage systems, their roles, and impacts on future power systems. IEEE Access 7, 4555–4585 (2019).  https://doi.org/10.1109/ACCESS.2018.2888497CrossRefGoogle Scholar
  22. 22.
    M. Xu, P. Zhao, Y. Huo, J. Han, J. Wang, Y. Dai, Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system. J. Clean. Prod. 242, 118437 (2020).  https://doi.org/10.1016/j.jclepro.2019.118437CrossRefGoogle Scholar
  23. 23.
    S. Rehman, L.M. Al-Hadhrami, M.M. Alam, Pumped hydro energy storage system: a technological review. Renew. Sustain. Energy Rev. 44, 586–598 (2015).  https://doi.org/10.1016/j.rser.2014.12.040CrossRefGoogle Scholar
  24. 24.
    E. Barbour, I.A.G. Wilson, J. Radcliffe, Y. Ding, Y. Li, A review of pumped hydro energy storage development in significant international electricity markets. Renew. Sustain. Energy Rev. 61, 421–432 (2016).  https://doi.org/10.1016/j.rser.2016.04.019CrossRefGoogle Scholar
  25. 25.
    T.M. Letcher, Storing Energy: With Special Reference to Renewable Energy Sources (Elsevier, Amsterdam, 2016Google Scholar
  26. 26.
    C.D. Botha, M.J. Kamper, Capability study of dry gravity energy storage. J. Energy Storage 23, 159–174 (2019).  https://doi.org/10.1016/j.est.2019.03.015
  27. 27.
    S.M. Mousavi, G.F. Faraji, A. Majazi, K. Al-Haddad, A comprehensive review of flywheel energy storage system technology. Renew. Sustain. Energy Rev. 67, 477–490 (2017).  https://doi.org/10.1016/j.rser.2016.09.060
  28. 28.
    A.A.K. Arani, H. Karami, G.B. Gharehpetian, M.S.A. Hejazi, Review of Flywheel energy storage systems structures and applications in power systems and microgrids. Renew. Sustain. Energy Rev. 69, 9–18 (2017).  https://doi.org/10.1016/j.rser.2016.11.166
  29. 29.
    M.E. Amiryar, K.R. Pullen, A review of flywheel energy storage system technologies and their applications. Appl. Sci. 7(3) (2017).  https://doi.org/10.3390/app7030286
  30. 30.
    G. Venkataramani, P. Parankusam, V. Ramalingam, J. Wang, A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renew. Sustain. Energy Rev. 62, 895–907 (2016).  https://doi.org/10.1016/j.rser.2016.05.002CrossRefGoogle Scholar
  31. 31.
    Q. Zhou, D. Du, C. Lu, Q. He, W. Liu, A review of thermal energy storage in compressed air energy storage system. Energy 188, 115993 (2019).  https://doi.org/10.1016/j.energy.2019.115993CrossRefGoogle Scholar
  32. 32.
    X. She et al., Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression. Appl. Energy 206(September), 1632–1642 (2017).  https://doi.org/10.1016/j.apenergy.2017.09.102CrossRefGoogle Scholar
  33. 33.
    D. Popov et al., “Cryogenic heat exchangers for process cooling and renewable energy storage: a review. Appl. Therm. Eng. 153, 275–290 (2019).  https://doi.org/10.1016/j.applthermaleng.2019.02.106
  34. 34.
    M. Wang, P. Zhao, Y. Wu, Y. Dai, Performance analysis of a novel energy storage system based on liquid carbon dioxide. Appl. Therm. Eng. 91, 812–823 (2015).  https://doi.org/10.1016/j.applthermaleng.2015.08.081CrossRefGoogle Scholar
  35. 35.
    R. Morgan, S. Nelmes, E. Gibson, G. Brett, Liquid air energy storage—analysis and first results from a pilot scale demonstration plant. Appl. Energy 137, 845–853 (2015).  https://doi.org/10.1016/j.apenergy.2014.07.109CrossRefGoogle Scholar
  36. 36.
    Highview Power Storage, in Liquid Air Energy Storage (LAES) (2017)Google Scholar
  37. 37.
    I. Sarbu, C. Sebarchievici, A comprehensive review of thermal energy storage. Sustainability 10(1) (2018).  https://doi.org/10.3390/su10010191
  38. 38.
    H. Al Quabeh, R. Saab, M.I.H.Ali, Chilled water storage feasibility with district cooling chiller in tropical environment. J. Sustain. Dev. Energy, Water Environ. Syst. 8(1), 132–144 (2020).  https://doi.org/10.13044/j.sdewes.d7.0259
  39. 39.
    M. Ban, G. Krajačić, M. Grozdek, T. Ćurko, N. Duić, The role of cool thermal energy storage (CTES) in the integration of renewable energy sources (RES) and peak load reduction. Energy 48(1), 108–117 (2012).  https://doi.org/10.1016/j.energy.2012.06.070CrossRefGoogle Scholar
  40. 40.
    SENER, in Renovables, Power, Oil & Gas: Solar (2020). [Online]. Available: http://www.poweroilandgas.sener/es/solar
  41. 41.
    J.A. Almendros-Ibáñez, M. Fernández-Torrijos, M. Díaz-Heras, J.F. Belmonte, C. Sobrino, A review of solar thermal energy storage in beds of particles: packed and fluidized beds. Sol. Energy 192, 193–237 (2019).  https://doi.org/10.1016/j.solener.2018.05.047
  42. 42.
    G. Mohan, M.B. Venkataraman, J. Coventry, Sensible energy storage options for concentrating solar power plants operating above 600 °C. Renew. Sustain. Energy Rev. 107(March), 319–337 (2019).  https://doi.org/10.1016/j.rser.2019.01.062CrossRefGoogle Scholar
  43. 43.
    D. Dsilva Winfred Rufuss, V. Rajkumar, L. Suganthi, S. Iniyan, Studies on latent heat energy storage (LHES) materials for solar desalination application-focus on material properties, prioritization, selection and future research potential. Sol. Energy Mater. Sol. Cells 189, 149–165, (2019).  https://doi.org/10.1016/j.solmat.2018.09.031
  44. 44.
    C. Prieto, L.F. Cabeza, Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl. Energy 254, 113646 (2019).  https://doi.org/10.1016/j.apenergy.2019.113646
  45. 45.
    G. Krese, R. Koželj, V. Butala, U. Stritih, Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy Build. 164, 239–253 (2018).  https://doi.org/10.1016/j.enbuild.2017.12.057CrossRefGoogle Scholar
  46. 46.
    D. Liu, L. Xin-Feng, L. Bo, Z. Si-quan, X. Yan, Progress in thermochemical energy storage for concentrated solar power: a review. Int. J. Energy Res. 42(15), 4546–4561 (2018).  https://doi.org/10.1002/er.4183CrossRefGoogle Scholar
  47. 47.
    Z.H. Pan, C.Y. Zhao, Gas–solid thermochemical heat storage reactors for high-temperature applications. Energy 130, 155–173 (2017).  https://doi.org/10.1016/j.energy.2017.04.102CrossRefGoogle Scholar
  48. 48.
    E.A. Quadrelli, G. Centi, J.L. Duplan, S. Perathoner, Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chemsuschem 4(9), 1194–1215 (2011).  https://doi.org/10.1002/cssc.201100473CrossRefGoogle Scholar
  49. 49.
    M. Bailera, S. Espatolero, P. Lisbona, L.M. Romeo, Power to gas-electrochemical industry hybrid systems: a case study. Appl. Energy 202(2017), 435–446 (2017).  https://doi.org/10.1016/j.apenergy.2017.05.177CrossRefGoogle Scholar
  50. 50.
    J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43(2) (2014)Google Scholar
  51. 51.
    S. Thiruvenkadam, S. Izhar, H. Yoshida, M.K. Danquah, R. Harun, Process application of subcritical water extraction (SWE) for algal bio-products and biofuels production. Appl. Energy 154, 815–828 (2015).  https://doi.org/10.1016/j.apenergy.2015.05.076CrossRefGoogle Scholar
  52. 52.
    H. Sakurai, H. Masukawa, M. Kitashima, K. Inoue, How close we are to achieving commercially viable large-scale photobiological hydrogen production by Cyanobacteria: a review of the biological aspects. Life 5(1), 997–1018 (2015).  https://doi.org/10.3390/life5010997CrossRefGoogle Scholar
  53. 53.
    C. Agrafiotis, M. Roeb, C. Sattler, A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 42, 254–285 (2015).  https://doi.org/10.1016/j.rser.2014.09.039CrossRefGoogle Scholar
  54. 54.
    T.J. Schildhauer, S.M.A. Biollaz, Synthetic Natural Gas from Coal and Dry Biomass, and Power-to-Gas Applications (Wiley, Hoboken, NJ, 2016)CrossRefGoogle Scholar
  55. 55.
    C. Wulf, J. Linßen, P. Zapp, Review of power-to-gas projects in Europe. Energy Procedia 155, 367–378 (2018).  https://doi.org/10.1016/j.egypro.2018.11.041CrossRefGoogle Scholar
  56. 56.
    IRENA International Renewable Energy Agency, in Electricity Storage and Renewables: Costs and Markets to 2030, Abu Dhabi (2017)Google Scholar
  57. 57.
    A.R. Dehghani-Sanij, E. Tharumalingam, M.B. Dusseault, R. Fraser, Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 104, 192–208 (2019).  https://doi.org/10.1016/j.rser.2019.01.023
  58. 58.
    V. Fernão Pires, E. Romero-Cadaval, D. Vinnikov, I. Roasto, J.F. Martins, Power converter interfaces for electrochemical energy storage systems—a review. Energy Convers. Manag. 86, 453–475 (2014).  https://doi.org/10.1016/j.enconman.2014.05.003
  59. 59.
    V. Ganesh, S. Pitchumani, V. Lakshminarayanan, New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J. Power Sources 158(2 SPEC. ISS.), 1523–1532 (2006).  https://doi.org/10.1016/j.jpowsour.2005.10.090
  60. 60.
    X.D. Xue, K.W.E. Cheng, D. Sutanto, Power system applications of superconducting magnetic energy storage systems, in Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, vol. 2 (2005), pp. 1524–1529.  https://doi.org/10.1109/ias.2005.1518561
  61. 61.
    A. Colmenar-Santos, E.L. Molina-Ibáñez, E. Rosales-Asensio, J.J. Blanes-Peiró, Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: application to the case of the Spanish electrical system. Renew. Sustain. Energy Rev. 82, 2455–2470 (2018).  https://doi.org/10.1016/j.rser.2017.09.012
  62. 62.
    T. Karaipoom, I. Ngamroo, Optimal superconducting coil integrated into DFIG wind turbine for fault ride through capability enhancement and output power fluctuation suppression. IEEE Trans. Sustain. Energy 6(1), 28–42 (2015).  https://doi.org/10.1109/TSTE.2014.2355423CrossRefGoogle Scholar
  63. 63.
    P. Mukherjee, V.V. Rao, Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems. J. Mod. Power Syst. Clean Energy 7(2), 400–411 (2019).  https://doi.org/10.1007/s40565-018-0460-yCrossRefGoogle Scholar
  64. 64.
    R.M. Hester, R.E. Harrison, Energy Storage Options and Their Environmental Impact (The Royal Society of Chemistry, 2019)Google Scholar
  65. 65.
    F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, Energy Storage in Power Systems (Wiley, New York, 2016Google Scholar
  66. 66.
    L. Qu, W. Qiao, Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Trans. Ind. Appl. 47(1), 359–367 (2011).  https://doi.org/10.1109/TIA.2010.2090932CrossRefGoogle Scholar
  67. 67.
    M.Y. Worku, Power smoothing control of PMSG based wind generation using supercapacitor energy storage system. Int. J. Emerg. Electr. Power Syst. 18(4) (2017).  https://doi.org/10.1515/ijeeps-2016-0181
  68. 68.
    M.Y. Worku, M.A. Abido, Fault ride-through and power smoothing control of PMSG-based wind generation using supercapacitor energy storage system. Arab. J. Sci. Eng. 44(3), 2067–2078 (2019).  https://doi.org/10.1007/s13369-018-3284-1CrossRefGoogle Scholar
  69. 69.
    G. Boukettaya, L. Krichen, A. Ouali, A comparative study of three different sensorless vector control strategies for a Flywheel Energy Storage System. Energy 35(1), 132–139 (2010).  https://doi.org/10.1016/j.energy.2009.09.003CrossRefGoogle Scholar
  70. 70.
    K.S. Sandhu, A. Mahesh, A new approach of sizing battery energy storage system for smoothing the power fluctuations of a PV/wind hybrid system. Int. J. Energy Res. 40(9), 1221–1234 (2016).  https://doi.org/10.1002/er.3511CrossRefGoogle Scholar
  71. 71.
    D.R. Aryani, J.S. Kim, H. Song, Suppression of pv output fluctuation using a battery energy storage system with model predictive control. Int. J. Fuzzy Log. Intell. Syst. 17(3), 202–209 (2017).  https://doi.org/10.5391/IJFIS.2017.17.3.202CrossRefGoogle Scholar
  72. 72.
    P.K. Ray, S.R. Mohanty, N. Kishor, Proportional-integral controller based small-signal analysis of hybrid distributed generation systems. Energy Convers. Manag. 52(4), 1943–1954 (2011).  https://doi.org/10.1016/j.enconman.2010.11.011CrossRefGoogle Scholar
  73. 73.
    T. Kinjo, T. Senjyu, N. Urasaki, H. Fujita, Terminal-voltage and output-power regulation of wind-turbine generator by series and parallel compensation using SMES. IEE Proc. Gener. Transm. Distrib. 153(3), 276 (2006).  https://doi.org/10.1049/ip-gtd:20045189CrossRefGoogle Scholar
  74. 74.
    J. Shi, Y.J. Tang, L. Ren, J.D. Li, S.J. Chen, Application of SMES in wind farm to improve voltage stability. Phys. C Supercond. Its Appl. 468(15–20), 2100–2103 (2008).  https://doi.org/10.1016/j.physc.2008.05.135CrossRefGoogle Scholar
  75. 75.
    I. Ngamroo, T. Karaipoom, Improving low-voltage ride-through performance and alleviating power fluctuation of DFIG wind turbine in DC microgrid by optimal SMES with fault current limiting function. IEEE Trans. Appl. Supercond. 24(5), 1–5 (2014).  https://doi.org/10.1109/TASC.2014.2333031CrossRefGoogle Scholar
  76. 76.
    C. Abbey, G. Joos, Supercapacitor energy storage for wind energy applications. IEEE Trans. Ind. Appl. 43(3), 769–776 (2007).  https://doi.org/10.1109/TIA.2007.895768CrossRefGoogle Scholar
  77. 77.
    W. Wang, B. Ge, D. Bi, M. Qin, W. Liu, Energy storage based LVRT and stabilizing power control for direct-drive wind power system, in 2010 International Conference on Power System Technology (POWERCON2010), vol. 3(1) (2010), , pp. 1–6.  https://doi.org/10.1109/powercon.2010.5666732
  78. 78.
    G.O. Suvire, P.E. Mercado, Combined control of a distribution static synchronous compensator/flywheel energy storage system for wind energy applications. IET Gener. Transm. Distrib. 6(6), 483–492 (2012).  https://doi.org/10.1049/iet-gtd.2011.0148CrossRefGoogle Scholar
  79. 79.
    S. Karrari, M. Noe, J. Geisbuesch, High-speed flywheel energy storage system (FESS) for voltage and frequency support in low voltage distribution networks, in 2018 IEEE IEEE 3 rd International Conference on Intelligent Energy and Power Systems (IEPS 2018), Janua (2018), pp. 176–182.  https://doi.org/10.1109/ieps.2018.8559521
  80. 80.
    H. Hayashi et al., Test results of power system control by experimental SMES. IEEE Trans. Appl. Supercond. 16(2), 598–601 (2006).  https://doi.org/10.1109/TASC.2006.871331CrossRefGoogle Scholar
  81. 81.
    O.D. Montoya, W. Gil-González, A. Garcés, G. Espinosa-Pérez, Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC. J. Energy Storage 17, 261–271 (2018).  https://doi.org/10.1016/j.est.2018.03.004CrossRefGoogle Scholar
  82. 82.
    H.R. Chamorro, C.A. Ordonez, J.C. Peng, M. Ghandhari, Non-synchronous generation impact on power systems coherency. IET Gener. Transm. Distrib. 10(10), 2443–2453 (2016).  https://doi.org/10.1049/iet-gtd.2015.1233CrossRefGoogle Scholar
  83. 83.
    B. Hartmann, I. Vokony, I. Táczi, “Effects of decreasing synchronous inertia on power system dynamics—overview of recent experiences and marketisation of services. Int. Trans. Electr. Energy Syst. 1–14 (2019).  https://doi.org/10.1002/2050-7038.12128
  84. 84.
    A. Hoskin, S. Garvey, J. Rouse, B. Cardenas, On the costs of grid inertia, in 2019 Offshore Energy Storage Summit (OSES 2019) (2019), pp. 1–7.  https://doi.org/10.1109/OSES.2019.8867342
  85. 85.
    J. Fang, R. Zhang, H. Li, Y. Tang, Frequency Derivative-based inertia enhancement by grid-connected power converters with a frequency-locked-loop. IEEE Trans. Smart Grid 10(5), 4918–4927 (2018).  https://doi.org/10.1109/TSG.2018.2871085CrossRefGoogle Scholar
  86. 86.
    J. Fang, H. Li, Y. Tang, F. Blaabjerg, On the inertia of future more-electronics power systems. IEEE J. Emerg. Sel. Top. Power Electron. 7(4), 2130–2146 (2018).  https://doi.org/10.1109/JESTPE.2018.2877766CrossRefGoogle Scholar
  87. 87.
    R. Zhang, J. Fang, Y. Tang, Inertia emulation through supercapacitor energy storage systems, in ICPE 2019—ECCE Asia—10th International Conference on Power ElectronicsECCE Asia, vol. 3 (2019), pp. 1365–1370Google Scholar
  88. 88.
    I. Ngamroo, A. N. Cuk Supriyadi, S. Dechanupaprittha, Y. Mitani, “Power oscillation suppression by robust SMES in power system with large wind power penetration. Phys. C Supercond. Its Appl. 469(1), 44–51 (2009).  https://doi.org/10.1016/j.physc.2008.11.002
  89. 89.
    W. Du, H.F. Wang, S. Cheng, J.Y. Wen, R. Dunn, Robustness of damping control implemented by Energy Storage Systems installed in power systems. Int. J. Electr. Power Energy Syst. 33(1), 35–42 (2011).  https://doi.org/10.1016/j.ijepes.2010.08.006CrossRefGoogle Scholar
  90. 90.
    G. Magdy, M. Nour, G. Shabib, A.A. Elbaset, Supplementary frequency control in a high-penetration real power system by renewables using SMES application, Dec 2019Google Scholar
  91. 91.
    T. Kerdphol, M. Watanabe, Y. Mitani, V. Phunpeng, Applying virtual inertia control topology to SMES system for frequency stability improvement of low-inertia microgrids driven by high renewables. Energies 12(20) (2019).  https://doi.org/10.3390/en12203902
  92. 92.
    J. Morren, S.W.H. De Haan, J.A. Ferreira, Primary power/frequency control with wind turbines and fuel cells, in 2006 IEEE Power & Energy Society General Meeting. PES (2006), p. 8.  https://doi.org/10.1109/pes.2006.1709074
  93. 93.
    F. Alshehri, V.G. Suárez, J.L. Rueda Torres, A. Perilla, M.A.M.M. van der Meijden, Modelling and evaluation of PEM hydrogen technologies for frequency ancillary services in future multi-energy sustainable power systems, Heliyon 5(4) (2019).  https://doi.org/10.1016/j.heliyon.2019.e01396
  94. 94.
    A. Oudalov, D. Chartouni, C. Ohler, Optimizing a battery energy storage system for primary frequency control. IEEE Trans. Power Syst. 22(3), 1259–1266 (2007).  https://doi.org/10.1109/TPWRS.2007.901459CrossRefGoogle Scholar
  95. 95.
    M. Terorde, H.J. Eckoldt, D. Schulz, Integration of a superconducting magnetic energy storage into a control reserve. Proc. Univ. Power Eng. Conf. (2013).  https://doi.org/10.1109/UPEC.2013.6714860CrossRefGoogle Scholar
  96. 96.
    J. Li et al., A novel use of the hybrid energy storage system for primary frequency control in a microgrid. Energy Procedia 103(April), 82–87 (2016).  https://doi.org/10.1016/j.egypro.2016.11.253CrossRefGoogle Scholar
  97. 97.
    R. Dufo-López, J.L. Bernal-Agustín, J.A. Domínguez-Navarro, Generation management using batteries in wind farms: Economical and technical analysis for Spain. Energy Policy 37(1), 126–139 (2009).  https://doi.org/10.1016/j.enpol.2008.08.012CrossRefGoogle Scholar
  98. 98.
    T.K.A. Brekken, A. Yokochi, A. Von Jouanne, Z.Z. Yen, H.M. Hapke, D.A. Halamay, Optimal energy storage sizing and control for wind power applications. IEEE Trans. Sustain. Energy 2(1), 69–77 (2011).  https://doi.org/10.1109/TSTE.2010.2066294CrossRefGoogle Scholar
  99. 99.
    G. He, Q. Chen, C. Kang, P. Pinson, Q. Xia, Optimal bidding strategy of battery storage in power markets considering performance-based regulation and battery cycle life. IEEE Trans. Smart Grid 7(5), 2359–2367 (2016).  https://doi.org/10.1109/TSG.2015.2424314CrossRefGoogle Scholar
  100. 100.
    D. Ipsakis, S. Voutetakis, P. Seferlis, F. Stergiopoulos, C. Elmasides, Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. Int. J. Hydrogen Energy 34(16), 7081–7095 (2009).  https://doi.org/10.1016/j.ijhydene.2008.06.051CrossRefGoogle Scholar
  101. 101.
    F.J. Vivas, A. De las Heras, F. Segura, J.M. Andújar, A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renew. Sustain. Energy Rev. 82, 126–155 (2018).  https://doi.org/10.1016/j.rser.2017.09.014
  102. 102.
    H. Lund, G. Salgi, B. Elmegaard, A.N. Andersen, Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl. Therm. Eng. 29(5–6), 799–806 (2009).  https://doi.org/10.1016/j.applthermaleng.2008.05.020CrossRefGoogle Scholar
  103. 103.
    P.D. Lund, J. Lindgren, J. Mikkola, J. Salpakari, Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015).  https://doi.org/10.1016/j.rser.2015.01.057CrossRefGoogle Scholar
  104. 104.
    L. Chen, T. Zheng, S. Mei, X. Xue, B. Liu, Q. Lu, Review and prospect of compressed air energy storage system. J. Mod. Power Syst. Clean Energy 4(4), 529–541 (2016).  https://doi.org/10.1007/s40565-016-0240-5CrossRefGoogle Scholar
  105. 105.
    W. Cai, R. Mohammaditab, G. Fathi, K. Wakil, A.G. Ebadi, N. Ghadimi, Optimal bidding and offering strategies of compressed air energy storage: a hybrid robust-stochastic approach. Renew. Energy 143, 1–8 (2019).  https://doi.org/10.1016/j.renene.2019.05.008CrossRefGoogle Scholar
  106. 106.
    M. Uddin, M.F. Romlie, M.F. Abdullah, S. Abd Halim, A.H. Abu Bakar, T. Chia Kwang, A review on peak load shaving strategies. Renew. Sustain. Energy Rev. 82, 3323–3332 (2018).  https://doi.org/10.1016/j.rser.2017.10.056
  107. 107.
    J.L. Bernal-Agustín, R. Dufo-López, Hourly energy management for grid-connected wind-hydrogen systems. Int. J. Hydrogen Energy 33(22), 6401–6413 (2008).  https://doi.org/10.1016/j.ijhydene.2008.08.026CrossRefGoogle Scholar
  108. 108.
    X. Li et al., A cost-benefit analysis of V2G electric vehicles supporting peak shaving in Shanghai. Electr. Power Syst. Res. 179, 106058 (2020).  https://doi.org/10.1016/j.epsr.2019.106058
  109. 109.
    H. Daneshi, A.K. Srivastava, Security-constrained unit commitment with wind generation and compressed air energy storage. IET Gener. Transm. Distrib. 6(2), 167–175 (2012).  https://doi.org/10.1049/iet-gtd.2010.0763CrossRefGoogle Scholar
  110. 110.
    C.J. Barnhart, M. Dale, A.R. Brandt, S.M. Benson, The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy Environ. Sci. 6(10), 2804–2810 (2013).  https://doi.org/10.1039/c3ee41973hCrossRefGoogle Scholar
  111. 111.
    B. Cleary, A. Duffy, A. O’Connor, M. Conlon, V. Fthenakis, Assessing the economic benefits of compressed air energy storage for mitigating wind curtailment. IEEE Trans. Sustain. Energy 6(3), 1021–1028 (2015).  https://doi.org/10.1109/TSTE.2014.2376698CrossRefGoogle Scholar
  112. 112.
    B. Dursun, B. Alboyaci, The contribution of wind-hydro pumped storage systems in meeting Turkey’s electric energy demand. Renew. Sustain. Energy Rev. 14(7), 1979–1988 (2010).  https://doi.org/10.1016/j.rser.2010.03.030CrossRefGoogle Scholar
  113. 113.
    H. Saber, M. Moeini-Aghtaie, M. Ehsan, M. Fotuhi-Firuzabad, A scenario-based planning framework for energy storage systems with the main goal of mitigating wind curtailment issue. Int. J. Electr. Power Energy Syst. 104, pp. 414–422 (2019).  https://doi.org/10.1016/j.ijepes.2018.07.020
  114. 114.
    A. Maleki, Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm. Desalination 435, 221–234 (2018).  https://doi.org/10.1016/j.desal.2017.05.034
  115. 115.
    X. Dui, G. Zhu, L. Yao, Two-stage optimization of battery energy storage capacity to decrease wind power curtailment in grid-connected wind farms. IEEE Trans. Power Syst. 33(3), 3296–3305 (2018).  https://doi.org/10.1109/TPWRS.2017.2779134CrossRefGoogle Scholar
  116. 116.
    J. Liu, Q. Wei, J. Huang, W. Zhou, J. Yu, Collaboration strategy and optimization model of wind farm-hybrid energy storage system for mitigating wind curtailment. Energy Sci. Eng. 3255–3273 (2019).  https://doi.org/10.1002/ese3.495
  117. 117.
    F. Xu, J. Liu, S. Lin, Q. Dai, C. Li, A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: a case study in China. Energy 163, 585–603 (2018).  https://doi.org/10.1016/j.energy.2018.08.152CrossRefGoogle Scholar
  118. 118.
    A. Maleki, H. Hafeznia, M.A. Rosen, F. Pourfayaz, Optimization of a grid-connected hybrid solar-wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches. Appl. Therm. Eng. 123, 1263–1277 (2017).  https://doi.org/10.1016/j.applthermaleng.2017.05.100CrossRefGoogle Scholar
  119. 119.
    W. Zhang, A. Maleki, M.A. Rosen, J. Liu, Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers. Manag. 180, 609–621 (2019).  https://doi.org/10.1016/j.enconman.2018.08.102
  120. 120.
    D. Parra, S.A. Norman, G.S. Walker, M. Gillott, Optimum community energy storage for renewable energy and demand load management. Appl. Energy 200, 358–369 (2017).  https://doi.org/10.1016/j.apenergy.2017.05.048CrossRefGoogle Scholar
  121. 121.
    S.A. Abdelrazek, S. Kamalasadan, Integrated PV capacity firming and energy time shift battery energy storage management using energy-oriented optimization. IEEE Trans. Ind. Appl. 52(3), 2607–2617 (2016).  https://doi.org/10.1109/TIA.2016.2531639CrossRefGoogle Scholar
  122. 122.
    S. Manchester, L. Swan, Compressed air storage and wind energy for time-of-day electricity markets. Procedia Comput. Sci. 19, 720–727 (2013).  https://doi.org/10.1016/j.procs.2013.06.095
  123. 123.
    D. Parra, L. Valverde, F.J. Pino, M.K. Patel, A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew. Sustain. Energy Rev. 101, 279–294 (2019).  https://doi.org/10.1016/j.rser.2018.11.010
  124. 124.
    D. Parra, M. Gillott, G.S. Walker, Design, testing and evaluation of a community hydrogen storage system for end user applications. Int. J. Hydrogen Energy 41(10), 5215–5229 (2016).  https://doi.org/10.1016/j.ijhydene.2016.01.098CrossRefGoogle Scholar
  125. 125.
    P. Colbertaldo, S.B. Agustin, S. Campanari, J. Brouwer, Impact of hydrogen energy storage on California electric power system: towards 100% renewable electricity. Int. J. Hydrogen Energy 44(19), 9558–9576 (2019).  https://doi.org/10.1016/j.ijhydene.2018.11.062CrossRefGoogle Scholar
  126. 126.
    N. Li, C. Uckun, E.M. Constantinescu, J.R. Birge, K.W. Hedman, A. Botterud, Flexible operation of batteries in power system scheduling with renewable energy. IEEE Trans. Sustain. Energy 7(2), 685–696 (2016).  https://doi.org/10.1109/TSTE.2015.2497470CrossRefGoogle Scholar
  127. 127.
    R. Jiang, J. Wang, Y. Guan, Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 27(2), 800–810 (2012).  https://doi.org/10.1109/TPWRS.2011.2169817CrossRefGoogle Scholar
  128. 128.
    P. Medina, A.W. Bizuayehu, J.P.S. Catalão, E.M.G. Rodrigues, J. Contreras, Electrical energy storage systems: technologies’ state-of-the-art, techno-economic benefits and applications analysis, in 47th Hawaii International Conference on System Science (2014), pp. 2295–2304.  https://doi.org/10.1109/hicss.2014.290
  129. 129.
    H. Mikulčić et al., Flexible carbon capture and utilization technologies in future energy systems and the utilization pathways of captured CO2. Renew. Sustain. Energy Rev. 114 (2019).  https://doi.org/10.1016/j.rser.2019.109338
  130. 130.
    M. Götz et al., Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016).  https://doi.org/10.1016/j.renene.2015.07.066CrossRefGoogle Scholar
  131. 131.
    J. Larfeldt, Technology options and plant design issues for fuel-flexible gas turbines, in Fuel Flexible Energy Generation, vol. 2 (Elsevier, Amsterdam, 2016), pp. 271–291Google Scholar
  132. 132.
    I. Staffell et al., The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12(2), 463–491 (2019).  https://doi.org/10.1039/c8ee01157eCrossRefGoogle Scholar
  133. 133.
    D. Yadav, R. Banerjee, A review of solar thermochemical processes. Renew. Sustain. Energy Rev. 54, 497–532 (2016).  https://doi.org/10.1016/j.rser.2015.10.026CrossRefGoogle Scholar
  134. 134.
    C. Graves, S.D. Ebbesen, M. Mogensen, K.S. Lackner, Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 15(1), 1–23 (2011).  https://doi.org/10.1016/j.rser.2010.07.014CrossRefGoogle Scholar
  135. 135.
    M. Thema, F. Bauer, M. Sterner, Power-to-gas: electrolysis and methanation status review. Renew. Sustain. Energy Rev. 112(January), 775–787 (2019).  https://doi.org/10.1016/j.rser.2019.06.030CrossRefGoogle Scholar
  136. 136.
    S. Brynolf, M. Taljegard, M. Grahn, J. Hansson, Electrofuels for the transport sector: a review of production costs. Renew. Sustain. Energy Rev. 81, 1887–1905 (2018).  https://doi.org/10.1016/j.rser.2017.05.288
  137. 137.
    G. Gahleitner, Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrogen Energy 38(5), 2039–2061 (2013).  https://doi.org/10.1016/j.ijhydene.2012.12.010CrossRefGoogle Scholar
  138. 138.
    J. Hodges, W. Geary, S. Graham, P. Hooker, R. Goff, Injecting hydrogen into the gas network—a literature search (2015)Google Scholar
  139. 139.
    M. Sterner, Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems (Kassel University Press GmbH, 2009)Google Scholar
  140. 140.
    Zero Emissions Platform, CCU—carbon capture and utilisation (2015)Google Scholar
  141. 141.
    R. Andika et al., Co-electrolysis for power-to-methanol applications. Renew. Sustain. Energy Rev. 95(July), 227–241 (2018).  https://doi.org/10.1016/j.rser.2018.07.030CrossRefGoogle Scholar
  142. 142.
    M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges. J. Chem. Soc. Dalt. Trans. 28, 2975–2992 (2007).  https://doi.org/10.1039/b700658fCrossRefGoogle Scholar
  143. 143.
    T.A. Semelsberger, R.L. Borup, H.L. Greene, Dimethyl ether (DME) as an alternative fuel. J. Power Sources 156(2), 497–511 (2006).  https://doi.org/10.1016/j.jpowsour.2005.05.082CrossRefGoogle Scholar
  144. 144.
    A. Hankin, N. Shah, Process exploration and assessment for the production of methanol and dimethyl ether from carbon dioxide and water. Sustain. Energy Fuels 1(7), 1541–1556 (2017).  https://doi.org/10.1039/c7se00206hCrossRefGoogle Scholar
  145. 145.
    G. Cinti, A. Baldinelli, A. Di Michele, U. Desideri, Integration of solid oxide electrolyzer and Fischer-Tropsch: a sustainable pathway for synthetic fuel. Appl. Energy 162, 308–320 (2016).  https://doi.org/10.1016/j.apenergy.2015.10.053CrossRefGoogle Scholar
  146. 146.
    S. Müller et al., Production of diesel from biomass and wind power—energy storage by the use of the Fischer-Tropsch process. Biomass Convers. Biorefinery 8(2), 275–282 (2018).  https://doi.org/10.1007/s13399-017-0287-1CrossRefGoogle Scholar
  147. 147.
    M. Babar et al., Thermodynamic data for cryogenic carbon dioxide capture from natural gas: a review. Cryogenics (Guildf) 102(July), 85–104 (2019).  https://doi.org/10.1016/j.cryogenics.2019.07.004CrossRefGoogle Scholar
  148. 148.
    M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89(9), 1609–1624 (2011).  https://doi.org/10.1016/j.cherd.2010.11.005CrossRefGoogle Scholar
  149. 149.
    S. Zeng et al., Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem. Rev. 117(14), 9625–9673 (2017).  https://doi.org/10.1021/acs.chemrev.7b00072CrossRefGoogle Scholar
  150. 150.
    M. Bui et al., Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11(5), 1062–1176 (2018).  https://doi.org/10.1039/c7ee02342aCrossRefGoogle Scholar
  151. 151.
    M. Babar et al., Thermodynamic data for cryogenic carbon dioxide capture from natural gas: a review. Cryogenics (Guildf) 102(March), 85–104 (2019).  https://doi.org/10.1016/j.cryogenics.2019.07.004CrossRefGoogle Scholar
  152. 152.
    S. Wang et al., Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 9(6), 1863–1890 (2016).  https://doi.org/10.1039/c6ee00811aCrossRefGoogle Scholar
  153. 153.
    G. Xu, F. Liang, Y. Yang, Y. Hu, K. Zhang, W. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies 7(5), 3484–3502 (2014).  https://doi.org/10.3390/en7053484CrossRefGoogle Scholar
  154. 154.
    B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, eds., IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2005Google Scholar
  155. 155.
    W.L. Theo, J.S. Lim, H. Hashim, A.A. Mustaffa, W.S. Ho, Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl. Energy 183, 1633–1663 (2016).  https://doi.org/10.1016/j.apenergy.2016.09.103CrossRefGoogle Scholar
  156. 156.
    A. Singh, K. Stéphenne, Shell Cansolv CO2 capture technology: achievement from first commercial plant. Energy Procedia 63, 1678–1685 (2014).  https://doi.org/10.1016/j.egypro.2014.11.177CrossRefGoogle Scholar
  157. 157.
    Office of Fossil and U. S. D. of E. (DOE) Energy, Petra Nova—W.A. Parish ProjectGoogle Scholar
  158. 158.
    R. Sabouni, H. Kazemian, S. Rohani, Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ. Sci. Pollut. Res. 21(8), 5427–5449 (2014).  https://doi.org/10.1007/s11356-013-2406-2CrossRefGoogle Scholar
  159. 159.
    K.O. Yoro, P.T. Sekoai, A.J. Isafiade, M.O. Daramola, A review on heat and mass integration techniques for energy and material minimization during CO2 capture. Int. J. Energy Environ. Eng. 10(3), 367–387 (2019).  https://doi.org/10.1007/s40095-019-0304-1CrossRefGoogle Scholar
  160. 160.
    D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014).  https://doi.org/10.1016/j.rser.2014.07.093CrossRefGoogle Scholar
  161. 161.
    Y. Lara, L.M. Romeo, P. Lisbona, S. Espatolero, A.I. Escudero, Efficiency and energy analysis of power plants with amine-impregnated solid sorbents CO2 capture. Energy Technol. 6(9), 1649–1659 (2018).  https://doi.org/10.1002/ente.201700806CrossRefGoogle Scholar
  162. 162.
    A. Perejón, L.M. Romeo, Y. Lara, P. Lisbona, A. Martínez, J.M. Valverde, The Calcium-Looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior. Appl. Energy 162, 787–807 (2016).  https://doi.org/10.1016/j.apenergy.2015.10.121CrossRefGoogle Scholar
  163. 163.
    L.M. Romeo, P. Lisbona, Y. Lara, Combined carbon capture cycles: an opportunity for size and energy penalty reduction. Int. J. Greenh. Gas Control 88(June), 290–298 (2019).  https://doi.org/10.1016/j.ijggc.2019.06.023CrossRefGoogle Scholar
  164. 164.
    C. Song, Q. Liu, S. Deng, H. Li, Y. Kitamura, Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew. Sustain. Energy Rev. 101, 265–278 (2019).  https://doi.org/10.1016/j.rser.2018.11.018
  165. 165.
    C. Ortiz, J.M. Valverde, R. Chacartegui, M. Benítez-Guerrero, A. Perejón, L.M. Romeo, The Oxy-CaL process: a novel CO2 capture system by integrating partial oxy-combustion with the Calcium-looping process. Appl. Energy 196, 1–17 (2017).  https://doi.org/10.1016/j.apenergy.2017.03.120CrossRefGoogle Scholar
  166. 166.
    Y. Hu, X. Li, H. Li, J. Yan, Peak and off-peak operations of the air separation unit in oxy-coal combustion power generation systems. Appl. Energy 112, 747–754 (2013).  https://doi.org/10.1016/j.apenergy.2012.12.001CrossRefGoogle Scholar
  167. 167.
    S. Espatolero, L.M. Romeo, A.I. Escudero, R. Kuivalainen, An operational approach for the designing of an energy integrated oxy-fuel CFB power plant. Int. J. Greenh. Gas Control 64(March), 204–211 (2017).  https://doi.org/10.1016/j.ijggc.2017.07.018CrossRefGoogle Scholar
  168. 168.
    J. Yan, Carbon capture and storage (CCS). Appl. Energy 148, A1–A6 (2015).  https://doi.org/10.1016/j.apenergy.2015.03.019CrossRefGoogle Scholar
  169. 169.
    F.M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, B. Alonso-Fariñas, L.F. Vilches Arenas, B. Navarrete, Carbon capture and utilization technologies: a literature review and recent advances. Energy Sources Part A Recover. Util. Environ. Eff. 41(12), 1403–1433 (2019).  https://doi.org/10.1080/15567036.2018.1548518
  170. 170.
    M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization. J. CO2 Util. 3–4, 65–73 (2013).  https://doi.org/10.1016/j.jcou.2013.08.001
  171. 171.
    J. Bujnicki, P. Dykstra, E. Fortunato, R.-D. Heuer, C. Keskitalo, P. Nurse, Group of Chief Scientific Advisors Scientific Opinion: Novel Carbon Capture and Utilisation Technologies (2018)Google Scholar
  172. 172.
    J.C. Abanades, E.S. Rubin, M. Mazzotti, H.J. Herzog, On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ. Sci. 10(12), 2491–2499 (2017).  https://doi.org/10.1039/c7ee02819aCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of Engineering and ArchitectureUniversity of ZaragozaZaragozaSpain
  2. 2.Aragonese Foundation for Research & Development (ARAID)ZaragozaSpain

Personalised recommendations