Skip to main content

Occipitotemporal Network for Face and Object Recognition Syndromes (Visual Network) Occipitoparietal and Provincial Hub Syndromes

  • Chapter
  • First Online:
Clinical Mentation Evaluation
  • 325 Accesses

Abstract

Approximately half of the human cerebral cortex is concerned with vision, and it usually supersedes other senses when there is conflict with other sensory inputs. Our visual system has developed predominance over the other senses, and vision focuses our attention. It has been hypothesized that attention is nature’s way of coping with the prodigious sensory input receiving a constant stream of information. We are subject to a profusion of sensory input, with the combined human sensory inputs receiving ~11 million bits of information per second. However, we can only process ~16–50 bits per second (0.0002%). The majority of decisions are therefore made at a non-conscious level [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmerman M. The nervous system in the context of information theory. In: Schmidt RF, Thews G, editors. Human physiology. Berlin: Springer; 1989. p. 166–73.

    Chapter  Google Scholar 

  2. Hassin RR, Uleman JS, Bargh JA. The new unconscious. Oxford: Oxford University Press; 2006.

    Book  Google Scholar 

  3. Rizzo M, Nawrot M, Zihl J. Motion and shape perception in cerebral akinetopsia. Brain. 1995;118:1105–27.

    Article  PubMed  Google Scholar 

  4. Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C. The human homologue of macaque area V6A. NeuroImage. 2013;82:517–30.

    Article  PubMed  Google Scholar 

  5. Galletti C, Fattori P, Gamberini M, Kutz DF. The cortical visual area V6: brain location and visual topography. Eur J Neurosci. 1999;11:3922–36.

    Article  PubMed  Google Scholar 

  6. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC. Visual topography of human intraparietal sulcus. J Neurosci. 2007;27(20):5326–37.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RB. Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci. 1998;1(3):235–41.

    Article  PubMed  Google Scholar 

  8. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural science. 5th ed. McGraw Hill: New York; 2013.

    Google Scholar 

  9. Kinsbourne M, Warrington EK. The localizing significance of limited simultaneous visual form perception. Brain. 1963;86:697–702.

    Article  PubMed  Google Scholar 

  10. Hartmann JA, Wolz WA, Roeltgen DP, et al. Denial of visual perception. Brain Cogn. 1991;16:29–40.

    Article  PubMed  Google Scholar 

  11. Zeki S, Ffytche DH. The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain. 1998;121:25–45.

    Article  PubMed  Google Scholar 

  12. Riddoch G. Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain. 1917;40:15–57.

    Article  Google Scholar 

  13. Wapner W, Judd T, Gardner H. Visual agnosia in an artist. Cortex. 1978;14:343–64.

    Article  PubMed  Google Scholar 

  14. Ffytche D, Blom JD, Catani M. Disorders of visual perception. Neurol Neurosurg Psychiatry. 2010;81:1280e1287. https://doi.org/10.1136/jnnp.2008.171348.

    Article  Google Scholar 

  15. Critchley M. The parietal lobes. New York: Hafner Press/MacMillan Publishing Co; 1953.

    Google Scholar 

  16. Uchiyama M, Nishio Y, Yokoi K, et al. Pareidolias: complex visual illusions in dementia with Lewy bodies. Brain. 2012;135:2458–69.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Michel F, Henaff MA. Seeing without the occipito-parietal cortex: simultanagnosia as a shrinkage of the attentional visual field. Behav Neurol. 2004;15:3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thomas C, Kveraga K, Huberle E, Karnath HO, Bar M. Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways. Brain. 2012;135:1578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Whiteside TC, Graybiel A, Niven JI. Visual illusions of movement. Brain. 1965;88:193–210.

    Article  PubMed  Google Scholar 

  20. Kolev OI. Visual hallucinations evoked by caloric vestibular stimulation in normal humans. J Vestib Res. 1995;5:19–23.

    Article  PubMed  Google Scholar 

  21. Uchida H, Suzuki T, Tanaka KF, et al. Recurrent episodes of perceptual alteration in patients treated with antipsychotic agents. J Clin Psychopharmacol. 2003;23:496–9.

    Article  PubMed  Google Scholar 

  22. Battelli L, Pascual-Leone A, Cavanagh P. The ‘when’ pathway of the right parietal lobe. Trends Cogn Sci. 2007;11:204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  PubMed  Google Scholar 

  24. Nieder A, Diester I, Tudusciuc O. Temporal and spatial enumeration processes in the primate parietal cortex. Science. 2006;313:1431–5.

    Article  PubMed  Google Scholar 

  25. Bonnet L, Comte A, Tatu L, Millot JL, Moulin T, Medeiros de Bustos E. The role of the amygdala in the perception of positive emotions: an “intensity detector” Front Behav Neurosci 2015;9:178. doi: https://doi.org/10.3389/fnbeh.2015.00178. eCollection 2015.

  26. Benarroch EE. The amygdala: functional organization and involvement in neurologic disorders. Neurology. 2015;84(3):313–24.

    Article  PubMed  Google Scholar 

  27. Critchley M. Metamorphopsia of central origin. Trans Ophthalmol Soc UK. 1949;69:111–21.

    Google Scholar 

  28. Ellis HD, Young AW, Quayle AH, De Pauw KW. Reduced autonomic responses to faces in Capgras delusion. Proc Biol Sci. 1997;264:1085–92.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bischof M, Bassetti CL. Total dream loss: a distinct neuropsychological dysfunction after bilateral PCA stroke. Ann Neurol. 2004;56:583–6.

    Article  PubMed  Google Scholar 

  30. Peña-Casanova J, Roig-Rovira T, Bermudez A, Tolosa-Sarro E. Optic aphasia, optic apraxia, and loss of dreaming. Brain Lang. 1985;26(1):63–71.

    Article  PubMed  Google Scholar 

  31. Santos-Bueso E, Serrador-Garcia M, Porta-Etessam J, et al. Charles Bonnet syndrome. A 45 case series. Rev Neurol. 2015;60:337–40.

    PubMed  Google Scholar 

  32. Benke T. Peduncular hallucinosis – a syndrome of impaired reality monitoring. J Neurol. 2006;253:1561–71.

    Article  PubMed  Google Scholar 

  33. Beck DM, Rees G, Frith CD, Lavie N. Neural correlates of change and change blindness. Nat Neurosci. 2001;4:645–50.

    Article  PubMed  Google Scholar 

  34. Rock I, Linnet CM, Grant PI, Mack A. Perception without attention: results of a new method. Cogn Psychol. 1992;24:502–34.

    Article  PubMed  Google Scholar 

  35. Scholte HS, Witteveen SC, Spekreijse H, Lamme VA. The influence of inattention on the neural correlates of scene segmentation. Brain Res. 2006;1076:106–15.

    Article  PubMed  Google Scholar 

  36. Windmann S, Wehrmann M, Calabrese P, Gunturkun O. Role of the prefrontal cortex in attentional control over bistable vision. J Cogn Neurosci. 2006;18:456–71.

    Article  PubMed  Google Scholar 

  37. Frith CD. In: Kandel ER, Schwartz JH, editors. Principles of neural science. 5th ed. New York: McGraw Hill; 2013.

    Google Scholar 

  38. Hoffmann M, Keiseb J, Moodley J, Corr P. Appropriate neurological evaluation and multimodality magnetic resonance imaging in eclampsia. Acta Neurol Scand. 2002;106(3):159–67.

    Article  PubMed  Google Scholar 

  39. Lezak MD, Howieson DB, Bigler ED, Tranel T, editors. Neuropsychological assessment. Oxford: Oxford University Press; 2012.

    Google Scholar 

  40. Warrington E, James M. VOSP. Harcourt assessment. The psychological corporation. London: The Thames Valley Test Company; 1991.

    Google Scholar 

  41. Brandt J. The Hopkins verbal learning test: development of a new memory test with six equivalent forms. Clin Neuropsychol. 1991;5:125–42.

    Article  Google Scholar 

  42. Randolph C. Manual: repeatable battery for the assessment of neuropsychological status. San Antonio: Psychological Corporation; 1998.

    Google Scholar 

  43. Hodges JR, Salmon DP, Butters N. Recognition and naming of famous faces in Alzheimer’s disease: a cognitive analysis. Neuropsychologia. 1993;31:775–88.

    Article  PubMed  Google Scholar 

  44. Osterrieth PA. Le test de copie d’une figure complexe. Archive de Psychologie. 1944;30:206–356 and L’examen RA. Psychologique dans les cas d’encephalopathie traumatique. Archives de Psychologie. 1941;28:286–340.

    Google Scholar 

  45. Boston Naming Test, Kaplan E, Goodglass H, Weintraub S. Boston naming test. 2nd ed. Boston: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  46. Howard D, Patterson K. Pyramids and palm trees: a test of semantic access from pictures and words. Bury St Edmunds: Thames Valley Test Company; 1992.

    Google Scholar 

  47. Barrett KE, Barman SM, Boitano S, Brooks HL, editors. Ganong’s review of medical physiology. 25th ed. New York: McGraw Hill; 2016.

    Google Scholar 

  48. Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain’s functional architecture during activation and rest. PNAS. 2009;106:13040–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Catani M, Jones DK, Donato R, Ffytche DH. Occipito-temporal connections in the human brain. Brain. 2003;126:2093–107.

    Article  PubMed  Google Scholar 

  50. Caverzasi E, Papinutto N, Amirbekian B, Berger MS, Henry RG. Q-ball of inferior Fronto-occipital fasciculus and beyond. PLoS One. 2014;9(6):e100274.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoffmann, M. (2020). Occipitotemporal Network for Face and Object Recognition Syndromes (Visual Network) Occipitoparietal and Provincial Hub Syndromes. In: Clinical Mentation Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-030-46324-3_11

Download citation

Publish with us

Policies and ethics