Skip to main content
  • 296 Accesses

Abstract

This chapter discusses some points regarding two classical passive techniques more and more popular in seismic micro-zonation studies: the Horizontal-to-Vertical Spectral Ratio (HVSR) and the ESAC (Extended Spatial AutoCorrelation), a sort of “generalized” SPAC (SPatial AutoCorrelation). The influence of industrial components on the HVSR, the role of Love waves in the HVSR modelling and few more important issues are illustrated. Furthermore, the idea that the HVSR curve represents the so-called site amplification is discussed also in the light of experimental data based on the computation of the SSR (Standard Spectral Ratio). A series of recommendations about the analysis and modelling of the effective dispersion curve retrieved from ESAC (a methodology that provides a dispersion curve much clearer with respect to the ReMi (Refraction Microtremor) technique) are then reported together with some concrete examples.

Mirrors should reflect a little before throwing back images.

Jean Cocteau

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AA.VV.—SESAME (2005) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation, 62 pp. Open file: ftp://ftp.geo.uib.no/pub/seismo/SOFTWARE/SESAME/USER-GUIDELINES/SESAME-HV-User-Guidelines.pdf. Accessed May 2020

  • Albarello D, Lunedei E (2013) Combining horizontal ambient vibration components for H/V spectral ratio estimates. Geophys J Int 194:936–951

    Article  Google Scholar 

  • Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seismol Soc Am 94:53–63

    Article  Google Scholar 

  • Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 95:1766–1778

    Article  Google Scholar 

  • Asten MW (1978) Geological control on the three-component spectra of Rayleigh-wave microseisms. Bull Seismol Soc Am 68:1623–1636

    Google Scholar 

  • Asten MW (2006) On bias and noise in passive seismic data from finite circular array data processed using SPAC methods. Geophysics 71:153–162

    Article  Google Scholar 

  • Asten MW, Hayashi K (2018) Application of the spatial auto-correlation method for shear-wave velocity studies using ambient noise. Surv Geophys 39:633–659

    Article  Google Scholar 

  • Asten MW, Henstridge JD (1984) Array estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics 49:1828–1837

    Article  Google Scholar 

  • Asten MW, Dhu T, Lam N (2004) Optimised array design for microtremor array studies applied to site classification; comparison of results with SCPT logs. In: Proceedings of the 13th world conference on earthquake engineering, Vancouver. Paper no 2903

    Google Scholar 

  • Asten MW, Aysegul A, Ezgi EE, Nurten SF, Beliz U (2014) Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise. Explor Geophys 45:74–85

    Article  Google Scholar 

  • Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bull Seismol Soc Am 60:29–61

    Google Scholar 

  • Bowden DC, Tsai VC (2017) Earthquake ground motion amplification for surface waves. Geophys Res Let 44(1):121–127

    Google Scholar 

  • Dal Moro G (2010) Insights on surface-wave dispersion curves and HVSR: joint analysis via Pareto optimality. J Appl Geophys 72:29–140

    Google Scholar 

  • Dal Moro G (2015) Joint analysis of Rayleigh-wave dispersion and HVSR of Lunar seismic data from the Apollo 14 and 16 sites. Icarus 254:338–349

    Article  Google Scholar 

  • Dal Moro G (2020) On the identification of industrial components in the Horizontal-to-Vertical Spectral Ratio (HVSR) from microtremors. Pure Appl Geophys. https://doi.org/10.1007/s00024-020-02424-0

  • Dal Moro G, Coviello V, Del Carlo G (2014) Shear-wave velocity reconstruction via unconventional joint analysis of seismic data: a case study in the light of some theoretical aspects. In: Engineering geology for society and territory, vol 5. Springer, pp 1177–1182

    Google Scholar 

  • Diagourtas D, Tzanis A, Makropoulos K (2001) Comparative study of microtremors analysis methods. Pure Appl Geophys 158:2463–2479

    Article  Google Scholar 

  • Dimitriu P, Kalogeras I, Theodulidis N (1999) Evidence of nonlinear site response in horizontal-to-vertical spectral ratio from near-field earthquakes. Soil Dyn Earthq Eng 18:423–435

    Article  Google Scholar 

  • Fasan M, Magrin A, Amadio C, Romanelli F, Vaccari F, Panza GF (2016) A seismological and engineering perspective on the 2016 Central Italy earthquakes. Int J Earthq Impact Eng 1:395–420

    Article  Google Scholar 

  • Ikeda T, Matsuoka T, Tsuji T, Hayashi K (2012) Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method. Geophys J Int 190:541–552

    Article  Google Scholar 

  • Lanchet C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42:377–397

    Article  Google Scholar 

  • Louie JN (2001) Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull Seismol Soc Am 91:347–364

    Article  Google Scholar 

  • Mark N, Sutton GH (1975) Lunar shear velocity structure at Apollo sites 12, 14, and 15. J Geophys Res 80:4932–4938

    Article  Google Scholar 

  • Mittal H, Kamal KA, Singh SK (2013) Estimation of site effects in Delhi using standard spectral ratio. Soil Dyn Earthq Eng 50:53–61

    Article  Google Scholar 

  • Mohammadioun B (1997) Nonlinear response of soils to horizontal and vertical bedrock ground motion. J Earthq Eng 1:93–119

    Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep Railw Tech Res Inst (RTRI) 30:25–33

    Google Scholar 

  • Nakamura Y (1996) Realtime information systems for seismic hazard mitigation. Q Rep Railw Tech Res Inst (RTRI) 37:112–127

    Google Scholar 

  • Nakamura Y (2000) Clear identification of fundamental idea of Nakamura’s technique and its applications. In: Proceedings of the XII world conference on earthquake engineering, New Zealand. Paper no 2656

    Google Scholar 

  • Nakamura Y (2008) On the H/V spectrum. In: The 14th world conference on earthquake engineering, 12–17 Oct 2008, Beijing, China

    Google Scholar 

  • Nakamura Y (2019) What is the Nakamura method? Seismol Res Lett 90:1437–1443

    Google Scholar 

  • Ohori M, Nobata A, Wakamatsu K (2002) A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bull Seismol Soc Am 92:2323–2332

    Article  Google Scholar 

  • Okada H (2003) The microseismic survey method. In: Geophysical monograph, series no 12. Society of Exploration Geophysicists of Japan, Tulsa

    Google Scholar 

  • Okada H (2006) Theory of efficient array observations of microtremors with special reference to the SPAC method. Explor Geophys 37:73–85

    Article  Google Scholar 

  • Olsen KB (2000) Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bull Seismol Soc Am 90:S77–S94

    Article  Google Scholar 

  • Panza GF, La Mura C, Peresan A, Romanelli F, Vaccari F (2012) Seismic hazard scenarios as preventive tools for a disaster resilient society. Adv Geophys 53:93–165

    Google Scholar 

  • Panza GF, Kossobovok V, Peresan A, Nekrasova A (2014) Why are the standard probabilistic methods of estimating seismic hazard and risks too often wrong. In: Wyss M (ed) Earthquake hazard, risk, and disasters. Elsevier, London, UK, pp 309–357. https://doi.org/10.1016/b978-0-12-394848-9.00012-2. ISBN: 978-0-12-394848-9

  • Perron V, Gélis C, Froment B, Hollender F, Bard P-Y, Cultrera G, Cushing EC (2018) Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins. Geophys J Int 215:1442–1454. https://doi.org/10.1093/gji/ggy355

    Article  Google Scholar 

  • Poggi V, Fäh D (2010) Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations. Geophys J Int 180:251–267

    Article  Google Scholar 

  • Schnabel PB, Lysmer J, Seed HB (1972) SHAKE—a computer program for earthquake analysis of horizontally layered sites. Report No. EERC 72–12, Earthquake Engineering Research Center, University of California, Berkeley

    Google Scholar 

  • Tada T, Cho I, Shinozaki Y (2007) Beyond the SPAC method: exploiting the wealth of circular-array methods for microtremor exploration. Bull Seismol Soc Am 97:2080–2095

    Article  Google Scholar 

  • Tokimatsu K, Tamura S, Kojima H (1992) Effects of multiple modes on Rayleigh wave dispersion characteristics. J Geotech Eng ASCE 118:1529–1543

    Article  Google Scholar 

  • Zuccolo E, Vaccari F, Peresan A, Panza GF (2011) Neo-deterministic and probabilistic seismic hazard assessments: a comparison over the Italian territory. Pure Appl Geophys 168:69–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Dal Moro .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dal Moro, G. (2020). HVSR, Amplifications and ESAC: Some Clarifications. In: Efficient Joint Analysis of Surface Waves and Introduction to Vibration Analysis: Beyond the Clichés . Springer, Cham. https://doi.org/10.1007/978-3-030-46303-8_3

Download citation

Publish with us

Policies and ethics