Skip to main content

Introduction

  • Chapter
  • First Online:
  • 310 Accesses

Abstract

High-speed trains have become one of the most important and advanced branches of intelligent transportation, of which the reliability and safety are still not mature enough for keeping up with other aspects. In the past one decade, data-driven fault detection and diagnosis (FDD) methods for high-speed trains are receiving increasing attention in transportation fields, and have always been a new category which is parallel to the signal analysis-based and model-based FDD methods. In this book, the data-driven FDD methods for high-speed trains are emphatically investigated and presented in both theoretical and practical aspects. Additional contributions of this thesis also cover the comprehensive review on FDD techniques for high-speed trains, the pros and cons of all FDD methods provided for researchers and practitioners with informative guidance, and some challenges and promising issues speculated for future investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Givoni M (2006) Development and impact of the modern high-speed train: a review. Transp Rev 26(5):593–611

    Article  Google Scholar 

  2. Chopade SS, Sharma PK (2013) High-speed trains. Int J Modern Eng Res 3(2):1161–1166

    Google Scholar 

  3. Chen H, Jiang B (2019) A review of fault detection and diagnosis for the traction system in high-speed trains. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2019.2897583

    Article  Google Scholar 

  4. Feng J, Xu J, Liao W, Liu Y (2017) Review on the traction system sensor technology of a rail transit train. Sensors 17(6):1–16

    Article  Google Scholar 

  5. Chen H, Jiang B, Lu N, Mao Z (2018) Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains. IEEE Trans Veh Technol 67(6):4819–4830

    Article  Google Scholar 

  6. Wang J, Wang J, Roberts C, Chen L (2015) Parallel monitoring for the next generation of train control systems. IEEE Trans Intell Transp Syst 16(1):330–338

    Article  Google Scholar 

  7. Zhu L, Yu FR, Wang Y, Ning B, Tang T (2019) Big data analytics in intelligent transportation systems: a survey. IEEE Trans Intell Transp Syst 20(1):383–398

    Article  Google Scholar 

  8. Zhang S, He Z, Lee WJ, Mai R (2017) Voltage-sag-profiles-based fault location in high-speed railway distribution system. IEEE Trans Ind Appl 53(6):5229–5238

    Article  Google Scholar 

  9. Henao H, Kia SH, Capolino GA (2011) Torsional-vibration assessment and gear-fault diagnosis in railway traction system. IEEE Trans Ind Electron 58(5):1707–1717

    Article  Google Scholar 

  10. Mao Z, Tao G, Jiang B, Yan XG (2017) Adaptive compensation of traction system actuator failures for high-speed trains. IEEE Trans Intell Transp Syst 18(11):2950–2963

    Article  Google Scholar 

  11. Guzinski J, Abu-Rub H, Diguet M, Krzeminski Z, Lewicki A (2010) Speed and load torque observer application in high-speed train electric drive. IEEE Trans Ind Electron 57(2):565–574

    Article  Google Scholar 

  12. Chen H, Jiang B, Lu N, Chen W (2018) Real-time incipient fault detection for electrical traction systems of CRH2. Neurocomput 306:119–129

    Article  Google Scholar 

  13. Zhou D, Ji H, He X, Shang H (2018) Fault detection and isolation of the brake cylinder system for electric multiple units. IEEE Trans Control Syst Technol 26(5):1744–1757

    Article  Google Scholar 

  14. Karaköse M, Yaman O, Murat K, Akin E (2018) A new approach for condition monitoring and detection of rail components and rail track in railway. Int J Comput Intell Syst 11(1):830–845

    Article  Google Scholar 

  15. Cheng Y, Zhou N, Zhang W, Wang Z (2018) Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis. J Sound Vib 425:53–69

    Article  Google Scholar 

  16. Wang FY (2017) Artificial intelligence and intelligent transportation: driving into the 3rd axial age with ITS. IEEE Intell Transp Syst Mag 9(4):6–9

    Article  Google Scholar 

  17. Zhang J, Wang FY, Wang K, Lin WH, Xu X, Chen C (2011) Data-driven intelligent transportation systems: a survey. IEEE Trans Intell Transp Syst 12(4):1624–1639

    Article  Google Scholar 

  18. Ning B, Tang T, Gao Z, Yan F, Wang FY, Zeng D (2006) Intelligent railway systems in China. IEEE Intell Syst 21(5):80–83

    Article  Google Scholar 

  19. Dong H, Ning B, Cai B, Hou Z (2010) Automatic train control system development and simulation for high-speed railways. IEEE Circuits Syst Mag 10(2):6–18

    Article  Google Scholar 

  20. Chen Z, Ding SX, Peng T, Yang C, Gui W (2018) Fault detection for non-gaussian processes using generalized canonical correlation analysis and randomized algorithms. IEEE Trans Ind Electron 65(2):1559–1567

    Article  Google Scholar 

  21. Chen H, Jiang B, Lu N, Mao Z (2017) Multi-mode kernel principal component analysis-based incipient fault detection for pulse width modulated inverter of China railway high-speed 5. Adv Mech Eng 9(10):1–12

    Google Scholar 

  22. Yang C, Yang C, Peng T, Yang X, Gui W (2017) A Fault-injection strategy for traction drive control systems. IEEE Trans Ind Electron 64(7):5719–5727

    Article  Google Scholar 

  23. Nandi S, Toliyat HA, Li X (2005) Condition monitoring and fault diagnosis of electrical motors-a review. IEEE Trans Energy Convers 20(4):719–729

    Article  Google Scholar 

  24. Ding SX (2008) Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer, Berlin

    Google Scholar 

  25. Qin N, Jin W, Huang J, Li Z, Liu J (2014) Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy. J Southwest Jiaotong Uni 49(1):27–32

    Google Scholar 

  26. Mei F, Liu N, Miao H, Pan Y, Sha H, Zheng J (2018) On-line fault diagnosis model for locomotive traction inverter based on wavelet transform and support vector machine. Microelectron Reliab 88–90:1274–1280

    Google Scholar 

  27. Crossman JA, Guo H, Murphey YL, Cardillo J (2003) Automotive signal fault diagnostics-part I: signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. IEEE Trans Veh Technol 52(4):1063–1075

    Article  Google Scholar 

  28. Chang GW, Lin HW, Chen SK (2004) Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters. IEEE Trans Power Del 19(2):766–773

    Article  Google Scholar 

  29. Yan R, Gao RX, Chen X (2014) Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process 96:1–15

    Article  Google Scholar 

  30. Cao H, Fan F, Zhou K, He Z (2016) Wheel-bearing fault diagnosis of trains using empirical wavelet transform. Meas 82:439–449

    Article  Google Scholar 

  31. Zhang S (2007) Fundamental application theory and engineering technology for railway high-speed trains. Science Press, Beijing, China

    Google Scholar 

  32. Lei Y, Lin J, He Z, Zuo MJ (2013) A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech Syst Signal Process 35(1–2):108–126

    Article  Google Scholar 

  33. Zhang K, Jiang B, Yan XG, Mao Z (2017) Incipient voltage sensor fault isolation for rectifier in railway electrical traction systems. IEEE Trans Ind Electron 64(8):6763–6774

    Article  Google Scholar 

  34. Wu Y, Jiang B, Lu N, Yang H, Zhou Y (2017) Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices. ISA Trans 67:183–192

    Article  Google Scholar 

  35. Bai W, Yao X, Dong H, Lin X (2017) Mixed \(H_{2}/H\infty \) fault detection filter design for the dynamics of high speed train. Sci China Inf Sci 60(4):1–3

    Google Scholar 

  36. Chen H, Jiang B, Lu N (2017) Data-driven incipient sensor fault estimation with application in inverter of high-speed railway. Math Prob Eng. https://doi.org/10.1155/2017/8937356

  37. Krylov VV (2001) Noise and vibration from high-speed trains. Thomas Telford

    Google Scholar 

  38. Schetz JA (2001) Aerodynamics of high-speed trains. Annu Rev Fluid Mech 33(1):371–414

    Article  MATH  Google Scholar 

  39. Najafabadi TA, Salmasi FR, Jabehdar-Maralani P (2011) Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives. IEEE Trans Ind Electron 58(5):1662–1672

    Article  Google Scholar 

  40. Tao G (2003) Adaptive control design and analysis. Wiley

    Google Scholar 

  41. Lin X, Dong H, Yao X, Bai W (2017) Neural adaptive fault-tolerant control for high-speed trains with input saturation and unknown disturbance. Neurocomput 260:32–42

    Article  Google Scholar 

  42. Feng D, Lin S, He Z, Sun X (2017) A technical framework of PHM and active maintenance for modern high-speed railway traction power supply systems. Int J Rail Transp 5(3):145–169

    Article  Google Scholar 

  43. Yin S, Ding SX, Xie X, Luo H (2014) A review on basic datadriven approaches for industrial process monitoring. IEEE Trans Ind Electron 61(11):6418–6428

    Article  Google Scholar 

  44. Gou B, Ge X, Liu Y, Feng X (2016) Load-current-based current sensor fault diagnosis and tolerant control scheme for traction inverters. Electron Lett 52(20):1717–1719

    Article  Google Scholar 

  45. Liu J, Li YF, Zio E (2017) A SVM framework for fault detection of the braking system in a high speed train. Mech Syst Signal Process 87:401–409

    Article  Google Scholar 

  46. Martins JF, Pires VF, Pires AJ (2006) PCA-based on-line diagnosis of induction motor stator fault feed by PWM inverter. In: Proceedings of the IEEE ISIE: 2401–2405, Canada

    Google Scholar 

  47. Ding SX (2014) Data-driven design of monitoring and diagnosis systems for dynamic processes: a review of subspace technique based schemes and some recent results. J Process Control 24(2):431–449

    Article  Google Scholar 

  48. Chen H, Lu S (2012) Fault diagnosis digital method for power transistors in power converters of switched reluctance motors. IEEE Trans Ind Electron 60(2):749–763

    Article  Google Scholar 

  49. Estima JO, Cardoso AJM (2013) A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed PWM motor drives by the reference current errors. IEEE Trans Ind Electron 60(8):3496–3505

    Article  Google Scholar 

  50. Hang J, Ding S, Zhang J, Cheng M, Chen W, Wang Q (2016) Detection of interturn short-circuit fault for PMSM with simple fault indicator. IEEE Trans Energy Convers 31(4):1697–1699

    Article  Google Scholar 

  51. Zhang B, Tan ACC, Lin J (2016) Gearbox fault diagnosis of high-speed railway train. Eng Fail Anal 66:407–420

    Article  Google Scholar 

  52. Cabal-Yepez E, Garcia-Ramirez AG, Romero-Troncoso RJ, Garcia-Perez A, Osornio-Rios RA (2013) Reconfigurable monitoring system for time-frequency analysis on industrial equipment through STFT and SWT. IEEE Trans Ind Informat 9(2):760–771

    Article  Google Scholar 

  53. Hu K, Liu Z, Lin S (2016) Wavelet entropy-based traction inverter open switch fault diagnosis in high-speed railways. Entropy 18(3):78

    Article  Google Scholar 

  54. Sun X, Mao Z, Jiang B, Li M (2017) EEMD based incipient fault diagnosis for sensors faults in high-speed train traction systems. In: Proceedings of the IEEE CAC: 4804–4809, China

    Google Scholar 

  55. Bennett SM, Patton RJ, Daley S (1999) Sensor fault-tolerant control of a rail traction drive. Control Eng Pract 7(2):217–225

    Article  Google Scholar 

  56. Lee KS, Ryu JS (2003) Instrument fault detection and compensation scheme for direct torque controlled induction motor drives. IEE Proc Control Theory Appl 150(4):376–382

    Article  Google Scholar 

  57. Guzinski J, Diguet M, Krzeminski Z, Lewicki A, Abu-Rub H (2009) Application of speed and load torque observers in high-speed train drive for diagnostic purposes. IEEE Trans Ind Electron 56(1):248–256

    Article  Google Scholar 

  58. Wu Y, Jiang B, Lu N (2019) A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices. IEEE Trans Syst Man Cybern Syst 49(10):2108–2118

    Article  Google Scholar 

  59. Chen H, Jiang B, Lu N (2018) A newly robust fault detection and diagnosis method for high-speed trains. IEEE Trans Intell Transp Syst 20(6):2198–2208

    Article  Google Scholar 

  60. Liu Q, Zhu Q, Qin SJ, Xu Q (2016) A comparison study of data-driven projection to latent structures modeling and monitoring methods on high-speed train operation. In: Proceedings of the IEEE conference on Chinese control: 1934-1768, China

    Google Scholar 

  61. Chen H, Jiang B, Ding SX, Lu N, Chen W (2019) Probability-relevant incipient fault detection and diagnosis methodology with applications to electric drive systems. IEEE Trans Control Syst Technol 27(6):2766–2773

    Article  Google Scholar 

  62. Yin J, Zhao W (2016) Fault diagnosis network design for vehicle on-board equipments of high-speed railway: a deep learning approach. Eng Appl Artif Intell 56:250–259

    Article  Google Scholar 

  63. Liu B, Peng T, Shi L, He Z, Yang C (2016) Multi fault diagnosis of traction motor current sensor based on state observer. Proceedings of the IEEE Conference on Control Decision: 7058–7063, China

    Google Scholar 

  64. Wang J, Qin SJ (2002) A new subspace identification approach based on principal component analysis. J Process Control 12(8):841–855

    Article  Google Scholar 

  65. Qin SJ (2003) Statistical process monitoring: basics and beyond. J Chemometrics 17:480–502

    Article  Google Scholar 

  66. Isermann R (2005) Model-based fault-detection and diagnosis-Status and applications. Annu Rev Control 29(1):71–85

    Article  Google Scholar 

  67. Dai X, Gao Z (2013) From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis. IEEE Trans Ind Informat 9(4):2226–2238

    Article  Google Scholar 

  68. Murphey YL, Crossman JA, Chen Z, Cardillo J (2003) Automotive fault diagnosis-part II: a distributed agent diagnostic system. IEEE Trans Veh Technol 52(4):1076–1098

    Article  Google Scholar 

  69. Ding SX (2014) Data-driven design of fault diagnosis and fault-tolerant control systems. Springer, New York

    Book  Google Scholar 

  70. Luo H (2016) Plug-and-play monitoring and performance optimization for industrial automation processes. Springer Vieweg

    Google Scholar 

  71. Freire NMA, Estima JO, Cardoso AJM (2013) Open-circuit fault diagnosis in PMSG drives for wind turbine applications. IEEE Trans Ind Electron 60(9):3957–3967

    Article  Google Scholar 

  72. Ren L, Xu Z, Yan X (2011) Single-sensor incipient fault detection. IEEE Sensors J 11(9):2102–2107

    Article  Google Scholar 

  73. Kaynia AM, Madshus C, Zackrisson P (2000) Ground vibration from high-speed trains: prediction and countermeasure. J Geotech Geoenviron Eng 126(6):531–537

    Article  Google Scholar 

  74. Joksimović GM, Riger J, Wolbank TM, Perić N, Vasak M (2013) Stator-current spectrum signature of healthy cage rotor induction machines. IEEE Trans Ind Electron 60(9):4025–4033

    Google Scholar 

  75. Zhang Z, Wang Y, Wang K (2013) Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. J Intell Manuf 24(6):1213–1227

    Article  Google Scholar 

  76. Bellini A, Filippetti F, Tassoni C, Capolino C (2008) Advances in diagnostic techniques for induction machines. IEEE Trans Ind Electron 55(12):4109–4126

    Article  Google Scholar 

  77. Xie J, Yang Y, Li T, Jin W (2014) Learning features from high speed train vibration signals with deep belief networks. In: Proceedings of the IEEE 2014 joint conference on neural networks: 2205–2210

    Google Scholar 

  78. Sancho C, Gomez-Parra M, Muñoz-Condes P, Andrés MAGS, González-Fernández FJ, Carpio J, Guirado R (2012) Advanced maintenance of rail traction motors using a magnetic leakage flux technique. IEEE Trans Ind Appl 48(3):942–951

    Article  Google Scholar 

  79. Zhong J, Huang Y (2010) Time-frequency representation based on an adaptive short-time Fourier transform. IEEE Trans Signal Process 58(10):5118–5128

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhao J, Yang Y, Li T, Jin W (2014) Application of empirical mode decomposition and fuzzy entropy to high-speed rail fault diagnosis. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  81. Wu J, Kuo J (2009) An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network. Expert Syst Appl 36(6):9776–9783

    Article  Google Scholar 

  82. Guo H, Crossman JA, Murphey YL, Coleman M (2000) Automotive signal diagnostics using wavelets and machine learning. IEEE Trans Veh Technol 49(5):1650–1662

    Article  Google Scholar 

  83. Chen J, Patten RJ (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic, Boston, MA, USA

    Book  Google Scholar 

  84. Yang C, Sun Y (2001) Mixed \(H_2\)/\(H\infty \) cruise controller design for high speed train. Int J Control 74(9):905–920

    Article  Google Scholar 

  85. Bai W, Dong H, Yao X, Lin X (2017) Fault detection filter design for the dynamics of high speed trains. In: Proceedings of the IEEE conference on Chinese control: 7155–7160, China

    Google Scholar 

  86. Campos-Delgado DU, Espinoza-Trejo DR (2011) An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives. IEEE Trans Ind Electron 58(2):671–679

    Article  Google Scholar 

  87. Depenbrock M, Evers C (2006) Model-based speed identication for induction machines in the whole operating range. IEEE Trans Ind Electron 53(1):31–40

    Article  Google Scholar 

  88. Wlas M, Krzeminski Z, Guzinski J, Abu-Rub H, Toliyat HA (2005) Articial-neural-network-based sensorless nonlinear control of induction motors. IEEE Trans Energy Convers 20(3):520–528

    Article  Google Scholar 

  89. Gou B, Ge X, Wang S, Feng X, Kuo JB, Habetler TG (2016) An open-switch fault diagnosis method for single-phase PWM rectifier using a model-based approach in high-speed railway electrical traction drive system. IEEE Trans Power Electron 31(5):3816–3826

    Article  Google Scholar 

  90. Youssef AB, Khil SKE, Slama-Belkhodja I (2013) State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction. IEEE Trans Power Electron 28(12):5842–5853

    Article  Google Scholar 

  91. Mao Z, Tao G, Jiang B, Yan XG (2018) Adaptive actuator compensation of position tracking for high-speed trains with disturbances. IEEE Trans Veh Technol 67(7):5706–5717

    Article  Google Scholar 

  92. Zhang K, Jiang B, Yan XG, Mao Z (2017) Incipient sensor fault estimation and accommodation for inverter devices in electric railway traction systems. Int J Adapt Control Signal Process 31(5):785–804

    Article  MathSciNet  MATH  Google Scholar 

  93. Zhang K, Jiang B, Yan XG, Mao Z (2016) Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device. ISA Trans 63:49–59

    Article  Google Scholar 

  94. Wu Y, Jiang B, Shi P (2016) Incipient fault diagnosis for T-S fuzzy systems with application to high-speed railway traction devices. IET Control Theory Appl 10(17):2286–2297

    Article  MathSciNet  Google Scholar 

  95. Mao Z, Zhan Y, Tao G, Jiang B, Yan XG (2017) Sensor fault detection for rail vehicle suspension systems with disturbances and stochastic noises. IEEE Trans Veh Technol 66(6):4691–4705

    Article  Google Scholar 

  96. Brenna M, Foiadelli F, Zaninelli D (2010) Electromagnetic model of high speed railway lines for power quality studies. IEEE Trans Power Electron 25(3):1301–1308

    Google Scholar 

  97. Jackson JE (2005) A user’s guide to principal components. Wiley

    Google Scholar 

  98. Chen H, Jiang B, Lu N, Mao Z (2016) Data-based incipient actuator fault detection and diagnosis for three-phase PWM voltage source inverter. In: Proceedings of the IEEE conference on Chinese control: 6443–6448, China

    Google Scholar 

  99. Chen H, Jiang B, Lu N (2018) A multi-mode incipient sensor fault detection and diagnosis method for electrical traction systems. Int J Control Autom Syst 16(4):1783–1793

    Article  Google Scholar 

  100. Cherry GA, Qin SJ (2006) Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis. IEEE Trans Semicond Manuf 19(2):159–172

    Article  Google Scholar 

  101. Song Q, Song YQ (2011) Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures. IEEE Trans Neural Netw 22(12):2250–2261

    Article  Google Scholar 

  102. Ni J, Zhang C, Yang SX (2011) An adaptive approach based on KPCA and SVM for real-time fault diagnosis of HVCBs. IEEE Trans Power Del 26(3):1960–1971

    Article  Google Scholar 

  103. Dai C, Liu Z, Hu K, Huang K (2016) Fault diagnosis approach of traction transformers in high-speed railway combining kernel principal component analysis with random forest. IET Elect Syst Transp 6(3):202–206

    Article  Google Scholar 

  104. Giantomassi A, Ferracuti F, Iarlori S, Ippoliti G, Longhi S (2015) Electric motor fault detection and diagnosis by kernel density estimation and Kullback-Leibler divergence based on stator current measurements. IEEE Trans Ind Electron 62(3):1770–1780

    Article  Google Scholar 

  105. Chen H, Jiang B, Lu N (2018) An improved incipient fault detection method based on Kullback-Leibler Divergence. ISA Trans 79:127–136

    Article  Google Scholar 

  106. Mateos-Aparicio G (2011) Partial least squares (PLS) methods: origins, evolution, and application to social sciences. Commun Stat Theory Methods 40(13):2305–2317

    Article  MathSciNet  MATH  Google Scholar 

  107. Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321–377

    Article  MATH  Google Scholar 

  108. Chen Z, Ding SX, Zhang K, Li Z, Hu Z (2016) Canonical correlation analysis-based fault detection methods with application to alumina evaporation process. Control Eng Pract 46:51–58

    Article  Google Scholar 

  109. Zhang K, Peng K, Chu R, Dong J (2018) Implementing multivariate statistics-based process monitoring: a comparison of basic data modeling approaches. Neurocomput 290:172–184

    Article  Google Scholar 

  110. Sankavaram C, Pattipati B, Pattipati K, Zhang Y, Howell M, Salman M (2012) Data-driven fault diagnosis in a hybrid electric vehicle regenerative braking system. In: Proceedings of the IEEE Aerospace Conference: 1–11, USA

    Google Scholar 

  111. Namburu SM, Azam SM, Luo J, Choi K, Pattipati KR (2007) Data-driven modeling, fault diagnosis and optimal sensor selection for HVAC chillers. IEEE Trans Autom Sci Eng 4(3):469–473

    Article  Google Scholar 

  112. Luo J, Pattipati KR, Qiao L, Chigusa S (2007) An integrated diagnostic development process for automotive engine control systems. IEEE Trans Syst Man Cybern C Appl Rev 37(6):1163–1173

    Article  Google Scholar 

  113. Su Z, Tang B, Liu Z, Qin Y (2015) Multi-fault diagnosis for rotating machinery based on orthogonal supervised linear local tangent space alignment and least square support vector machine. Neurocomput 157:208–222

    Article  Google Scholar 

  114. Chen H, Jiang B, Zhang T, Lu N (2019) Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems. Neurocomput. https://doi.org/10.1016/j.neucom.2018.07.103

  115. Chen Z, Li X, Yang C, Peng T, Yang C, Karimi HR, Gui W (2019) A data-driven ground fault detection and isolation method for main circuit in railway electrical traction system. ISA Trans 87:264–271

    Article  Google Scholar 

  116. Klausmeier R (1986) Using artificial intelligence in vehicle diagnostic systems. SAE technical paper. https://doi.org/10.4271/861124

  117. Du J, Jin W, Cai Z, Zhu F, Wu Z (2016) A new feature evaluation algorithm and its application to fault of high-speed railway. In: Proceedings of the International Conference on Intelligent Transportation: 1–14, Singapore

    Google Scholar 

  118. Zhao Y, Guo Z, Yan J (2017) Vibration signal analysis and fault diagnosis of bogies of the high-speed train based on deep neural networks. J Vibroeng 19(4):2456–2474

    Article  Google Scholar 

  119. Chen H, Jiang B, Ding SX (2020) A broad learning aided data-driven framework of fast fault diagnosis for high-speed trains. IEEE Intell Transp Syst Mag. https://doi.org/10.1109/MITS.2019.2907629

    Article  Google Scholar 

  120. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K (2003) A review of process fault detection and diagnosis Part III: process history based methods. Comput Chem Eng 27(3):327–346

    Article  Google Scholar 

  121. Chen H, Jiang B, Chen W, Yi H (2018) Data-driven detection and diagnosis of incipient faults in electrical drives of high-speed trains. IEEE Trans Ind Electron 66(6):4716–4725

    Article  Google Scholar 

  122. Chen D, Yin J, Chen L, Xu H (2017) Parallel control and management for high-speed maglev systems. IEEE Trans Intell Transp Syst 18(2):431–440

    Article  Google Scholar 

  123. Gao R, Wang Y, Lai J, Gao H (2016) Neuro-adaptive fault-tolerant control of high speed trains under traction-braking failures using self-structuring neural networks. Inf Sci 367:449–462

    Article  MATH  Google Scholar 

  124. Hu H, Tang B, Gong X, Wei W, Wang H (2017) Intelligent fault diagnosis of the high-speed train with big data based on deep neural networks. IEEE Trans Ind Informat 13(4):2106–2116

    Article  Google Scholar 

  125. Chen H, Jiang B, Chen W, Li Z (2019) Edge computing aided framework of fault detection for traction control systems in high-speed trains. IEEE Trans Veh Technol. https://doi.org/10.1109/TVT.2019.2957962

    Article  Google Scholar 

  126. Chen H, Wu J, Jiang B, Chen W (2019) A modified neighborhood preserving embedding-based incipient fault detection with applications to small-scale cyber-physical systems. ISA Trans. https://doi.org/10.1016/j.isatra.2019.08.022

  127. Si X (2017) Data-driven remaining useful life prognosis techniques: stochastic models, methods and applications. Springer

    Google Scholar 

  128. Zhang Y, An J, Ma C (2013) Fault detection of non-Gaussian processes based on model migration. IEEE Trans Control Syst Technol 21(5):1517–1526

    Article  Google Scholar 

  129. Hong M, Wang Q, Su Z, Cheng L (2014) In situ health monitoring for bogie systems of CRH380 train on Beijing-Shanghai high-speed railway. Mech Syst Signal Process 45(2):378–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtian Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Jiang, B., Lu, N., Chen, W. (2020). Introduction. In: Data-driven Detection and Diagnosis of Faults in Traction Systems of High-speed Trains. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-46263-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46263-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46262-8

  • Online ISBN: 978-3-030-46263-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics