Advertisement

NOMA-enabled Wireless Powered Backscatter Communications for Secure and Green IoT Networks

Chapter
Part of the Internet of Things book series (ITTCC)

Abstract

Non-orthogonal multiple access (NOMA) is becoming one of the promising technologies for the fifth generation (5G) and beyond 5G (B5G) communications due to its ability of connecting massive wireless devices. Meanwhile, backscatter communication (BSCom) is emerging as a key solution to the Internet of Things (IoTs) due to its energy efficiency. In this chapter, we first provide a brief introduction of NOMA technology, discuss its fundamental concepts, and outline its applications. Then, we discuss the basic concepts of BSCom systems in brief, describe its different configurations, highlight the challenges of NOMA-enabled BSCom systems, and discuss the recent solutions. Moreover, we provide the basics of physical layer security (PLS) in wireless communication systems. Using the aforementioned backgrounds, we formulate an optimization problem for secrecy rate maximization in NOMA-enabled BSCom in the presence of multiple eavesdroppers. The problem is subjected to backscatter device (BSD) reflection coefficient and base station (BS) power according to NOMA protocol. To efficiently solve the optimization problem, we exploit the duality theory. For the purpose of comparison, we also present a conventional orthogonal multiple access (OMA)-enabled BSCom system as a benchmark. Finally, we present the simulation results and conclude this chapter with future research directions.

Keywords

5G/B5G Non-orthogonal multiple access Back scatter communication Physical layer security Internet of Things Secrecy rate maximization 

References

  1. 1.
    Khan, W.U., Ali, Z., Waqas, M., Sidhu, G.A.S.: Efficient power allocation with individual QoS guarantees in future small-cell networks. AEU-Int. J. Electr. Commun. 105, 36–41 (2019)Google Scholar
  2. 2.
    Wu, Q., Chen, W., Ng, D.W.K., Schober, R.: Spectral and energy-efficient wireless powered IoT networks: NOMA or TDMA? IEEE Trans. Veh. Technol. 67(7), 6663–6667 (2018)Google Scholar
  3. 3.
    Shirvanimoghaddam, M., Dohler, M., Johnson, S.J.: Massive non-orthogonal multiple access for cellular IoT: potentials and limitations. IEEE Commun. Mag. 55(9), 55–61 (2017)Google Scholar
  4. 4.
    Zhai, D., Zhang, R., Cai, L., Li, B., Jiang, Y.: Energy-efficient user scheduling and power allocation for NOMA-based wireless networks with massive IoT devices. IEEE Internet of Things J. 5(3), 1857–1868 (2018)Google Scholar
  5. 5.
    Jabeen, T., Ali, Z., Khan, W.U., Jameel, F., Khan, I., Sidhu, G.A.S., Choi, B.J.: Joint power allocation and link selection for multi-carrier buffer aided relay network. Electronics 8(6), 686 (2019)Google Scholar
  6. 6.
    Abozariba, R., Naeem, M.K., Patwary, M., Seyedebrahimi, M., Bull, P., Aneiba, A.: NOMA-based resource allocation and mobility enhancement framework for IoT in next generation cellular networks. IEEE Access 7, 29158–29172 (2019)Google Scholar
  7. 7.
    Shahini, A., Ansari, N.: NOMA aided narrowband IoT for Machine type communications with user clustering. IEEE Internet of Things J. 6, no. 4, 7183-7191, Aug. (2019).  https://doi.org/10.1109/JIOT.2019.2914947
  8. 8.
    Jameel, F., Khan, W.U., Chang, Z., Ristaniemi, T., Liu, J.: Secrecy analysis and learning-based optimization of cooperative NOMA SWIPT systems. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)Google Scholar
  9. 9.
    Khan, W.U., Yu, Z., Yu, S., Sidhu, G.A.S., Liu, J.: Efficient power allocation in downlink multi-cell multi-user NOMA networks. IET Commun. 13(4), 396–402 (2019).  https://doi.org/10.1049/iet-com.2018.5251
  10. 10.
    Li, X., Li, J., Li, L.: Performance analysis of impaired SWIPT NOMA relaying networks over imperfect weibull channels. IEEE Syst. J. 1–4 (2019).  https://doi.org/10.1109/JSYST.2019.2919654
  11. 11.
    Ding, Z., Lei, X., Karagiannidis, G.K., Schober, R., Yuan, J., Bhargava, V.K.: A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J. Sel. Areas Commun. 35(10), 2181–2195 (2017)Google Scholar
  12. 12.
    Cover, T.: Broadcast channels. IEEE Trans. Inform. Theory 18(1), 2–14 (1972).  https://doi.org/10.1109/TIT.1972.1054727.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bergmans, P.: Random coding theorem for broadcast channels with degraded components. IEEE Trans. Inform. Theory 19(2), 197–207 (1973).  https://doi.org/10.1109/TIT.1973.1054980.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gallager, R.G.: Capacity and coding for degraded broadcast channels. Problemy Peredachi Informatsii 10(3), 3–14 (1974)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Vanka, S., Srinivasa, S., Gong, Z., Vizi, P., Stamatiou, K., Haenggi, M.: Superposition coding strategies: design and experimental evaluation. IEEE Trans. Wirel. Commun. 11(7), 2628–2639 (2012)Google Scholar
  16. 16.
    Li, X., Liu, M., Deng, C., Mathiopoulos, P.T., Ding, Z., Liu, Y.: Full-duplex cooperative NOMA relaying systems with I/Q imbalance and imperfect SIC. IEEE Wirel. Commun. Lett. 1 (2019).  https://doi.org/10.1109/LWC.2019.2939309
  17. 17.
    Khan, W.U.: Maximizing physical layer security in relay-assisted multicarrier nonorthogonal multiple access transmission. Internet Technol. Lett. 2(2), e76 (2019)Google Scholar
  18. 18.
    Sen, S., Santhapuri, N., Choudhury, R.R., Nelakuditi, S.: Successive interference cancellation: a back-of-the-envelope perspective. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, p. 17. ACM (2010)Google Scholar
  19. 19.
    Ali, A., Baig, A., Awan, G.M., Khan, W.U., Ali, Z., Sidhu, G.A.S.: Efficient resource management for sum capacity maximization in 5G NOMA systems. Appl. Syst. Innov. 2(3), 27 (2019)Google Scholar
  20. 20.
    Miridakis, N.I., Vergados, D.D.: A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems. IEEE Commun. Surv. Tutor. 15(1), 312–335 (2012)Google Scholar
  21. 21.
    Zhao, J., Liu, Y., Chai, K.K., Nallanathan, A., Chen, Y., Han, Z.: Spectrum allocation and power control for non-orthogonal multiple access in HetNets. IEEE Trans. Wirel. Commun. 16(9), 5825–5837 (2017)Google Scholar
  22. 22.
    Ali, Z., Sidhu, G.A.S., Waqas, M., Gao, F.: On fair power optimization in nonorthogonal multiple access multiuser networks. Trans. Emerg. Telecommun. Technol. 29(12), e3540 (2018)Google Scholar
  23. 23.
    Khan, W.U., Jameel, F., Ristaniemi, T., Elhalawany, B.M., Liu, J.: Efficient power allocation for multi-cell uplink NOMA network. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), pp. 1–5 (2019).  https://doi.org/10.1109/VTCSpring.2019.8746316
  24. 24.
    Timotheou, S., Krikidis, I.: Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Process. Lett. 22(10), 1647–1651 (2015).  https://doi.org/10.1109/LSP.2015.2417119.CrossRefGoogle Scholar
  25. 25.
    Shirvanimoghaddam, M., Dohler, M., Johnson, S.J.: Massive non-orthogonal multiple access for cellular IoT: potentials and limitations. IEEE Commun. Mag. 55(9), 55–61 (2017).  https://doi.org/10.1109/MCOM.2017.1600618.CrossRefGoogle Scholar
  26. 26.
    Chen, Z., Ding, Z., Dai, X., Zhang, R.: An optimization perspective of the superiority of NOMA compared to conventional OMA. IEEE Trans. Signal Process. 65(19), 5191–5202 (2017).  https://doi.org/10.1109/TSP.2017.2725223.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Dai L,, Wang, B., Yuan, Y., Han, S., Wang, C.I.Z.: Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015).  https://doi.org/10.1109/MCOM.2015.7263349
  28. 28.
    Li, A., Lan, Y., Chen, X., Jiang, H.: Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G. China Commun. 12(Supplement), 28–37 (2015).  https://doi.org/10.1109/CC.2015.7386168CrossRefGoogle Scholar
  29. 29.
    Vaezi, M., Amarasuriya, G., Liu, Y., Arafa, A., Fang, F., Ding, Z.: Interplay Between NOMA and other emerging technologies: a survey, arXiv preprint arXiv:1903.10489
  30. 30.
    Islam, S.M.R., Avazov, N., Dobre, O.A., Kwak, K.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2017).  https://doi.org/10.1109/COMST.2016.2621116CrossRefGoogle Scholar
  31. 31.
    Zhao, J., Liu, Y., Chai, K.K., Nallanathan, A., Chen, Y., Han, Z.: Spectrum allocation and power control for non-orthogonal multiple access in HetNets. IEEE Trans. Wirel. Commun. 16(9), 5825–5837 (2017).  https://doi.org/10.1109/TWC.2017.2716921CrossRefGoogle Scholar
  32. 32.
    Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., Hanzo, L.: Non-orthogonal multiple access for 5G and beyond. arXiv preprint arXiv:1808.00277
  33. 33.
    Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., Wang, Z.: Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)Google Scholar
  34. 34.
    Vaezi, M., Amarasuriya, G., Liu, Y., Arafa, A., Fang, F., Ding, Z.: Interplay between NOMA and other emerging technologies: a survey. IEEE Trans. Cogn. Commun. Netw. 1 (2019).  https://doi.org/10.1109/TCCN.2019.2933835
  35. 35.
    Memon, M.L., Saxena, N., Roy, A., Shin, D.R.: Backscatter communications: inception of the battery-free era—a comprehensive survey. Electronics 8(2), 129 (2019)Google Scholar
  36. 36.
    Jameel, F., Duan, R., Chang, Z., Liljemark, A., Ristaniemi, T., Jantti, R.: Applications of backscatter communications for healthcare networks. arXiv preprint arXiv:1906.09209
  37. 37.
    Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient backscatter communications: a contemporary survey. IEEE Commun. Surv. Tutor. 20(4), 2889–2922 (2018)CrossRefGoogle Scholar
  38. 38.
    Jameel, F., Ristaniemi, T., Khan, I., Lee, B.M.: Simultaneous harvest-and-transmit ambient backscatter communications under Rayleigh fading. EURASIP J. Wirel. Commun. Netw. 2019(1), 166 (2019)Google Scholar
  39. 39.
    Dobkin, D.M.: The RF in RFID: UHF RFID in practice. Newnes (2012)Google Scholar
  40. 40.
    Choi, S.H., Kim, D.I.: Backscatter radio communication for wireless powered communication networks. In: 2015 21st Asia-Pacific Conference on Communications (APCC), pp. 370–374. IEEE (2015)Google Scholar
  41. 41.
    Kimionis, J., Bletsas, A., Sahalos, J.N.: Increased range bistatic scatter radio. IEEE Trans. Commun. 62(3), 1091–1104 (2014)Google Scholar
  42. 42.
    Fasarakis-Hilliard, N., Alevizos, P.N., Bletsas, A.: Coherent detection and channel coding for bistatic scatter radio sensor networking. IEEE Trans. Commun. 63(5), 1798–1810 (2015)Google Scholar
  43. 43.
    Wang, G., Gao, F., Fan, R., Tellambura, C.: Ambient backscatter communication systems: detection and performance analysis. IEEE Trans. Commun. 64(11), 4836–4846 (2016).  https://doi.org/10.1109/TCOMM.2016.2602341.CrossRefGoogle Scholar
  44. 44.
    Qian, J., Gao, F., Wang, G., Jin, S., Zhu, H.: Noncoherent detections for ambient backscatter system. IEEE Trans. Wirel. Commun. 16(3), 1412–1422 (2017).  https://doi.org/10.1109/TWC.2016.2635654.CrossRefGoogle Scholar
  45. 45.
    Lyu, B., Yang, Z., Gui, G., Sari, H.: Optimal time allocation in backscatter assisted wireless powered communication networks. Sensors 17(6), 1258 (2017)Google Scholar
  46. 46.
    Guo, J., Zhou, X., Durrani, S., Yanikomeroglu, H.: Backscatter communications with NOMA (Invited Paper). In: 2018 15th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–5 (2018).  https://doi.org/10.1109/ISWCS.2018.8491248
  47. 47.
    Zhang, Q., Zhang, L., Liang, Y., Kam, P.: Backscatter-NOMA: a symbiotic system of cellular and Internet-of-Things networks. IEEE Access 7, 20000–20013 (2019).  https://doi.org/10.1109/ACCESS.2019.2897822.CrossRefGoogle Scholar
  48. 48.
    Farajzadeh, A., Ercetin, O., Yanikomeroglu, H.: UAV data collection over NOMA backscatter networks: UAV altitude and trajectory optimization. arXiv preprint arXiv:1902.03061
  49. 49.
    Guo, J., Zhou, X., Durrani, S., Yanikomeroglu, H.: Design of non-orthogonal multiple access enhanced backscatter communication. IEEE Trans. Wirel. Commun. 17(10), 6837–6852 (2018).  https://doi.org/10.1109/TWC.2018.2864741.CrossRefGoogle Scholar
  50. 50.
    Li, Y., Jiang, M., Zhang, Q., Qin, J.: Secure beamforming in MISO NOMA backscatter device aided symbiotic radio networks. arXiv preprint arXiv:1906.03410
  51. 51.
    Li, X., Huang, M., Zhang, C., Deng, D., Rabie, K.M., Ding, Y., Du, J.: Security and reliability performance analysis of cooperative multi-relay systems with nonlinear energy harvesters and hardware impairments. IEEE Access 7, 102644–102661 (2019).  https://doi.org/10.1109/ACCESS.2019.2930664.CrossRefGoogle Scholar
  52. 52.
    Chen, X., Ng, D.W.K., Gerstacker, W.H., Chen, H.-H.: A survey on multiple-antenna techniques for physical layer security. IEEE Commun. Surv. Tutor. 19(2), 1027–1053 (2016)Google Scholar
  53. 53.
    Fan, L., Zhao, R., Gong, F.-K., Yang, N., Karagiannidis, G.K.: Secure multiple amplify-and-forward relaying over correlated fading channels. IEEE Trans. Commun. 65(7), 2811–2820 (2017)Google Scholar
  54. 54.
    Kundu, C., Ghose, S., Ngatched, T.M., Dobre, O.A., Duong, T.Q., Bose, R.: Effects of CSI knowledge on secrecy of threshold-selection decode-and-forward relaying. IEEE Access 5, 19393–19408 (2017)Google Scholar
  55. 55.
    Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.-K., Gao, X.: A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 36(4), 679–695 (2018)Google Scholar
  56. 56.
    Bloch, M., Barros, J.: Physical-Layer Security: From Information Theory to Security Engineering. Cambridge University Press (2011)Google Scholar
  57. 57.
    Gopala, P.K., Lai, L., El Gamal, H.: On the secrecy capacity of fading channels. In: IEEE International Symposium on Information Theory, vol. 2007, pp. 1306–1310. IEEE (2007)Google Scholar
  58. 58.
    Yang, N., Yeoh, P.L., Elkashlan, M., Schober, R., Collings, I.B.: Transmit antenna selection for security enhancement in MIMO wiretap channels. IEEE Trans. Commun. 61(1), 144–154 (2012)Google Scholar
  59. 59.
    Wu, Y., Schober, R., Ng, D.W.K., Xiao, C., Caire, G.: Secure massive MIMO transmission with an active eavesdropper. IEEE Trans. Inform. Theory 62(7), 3880–3900 (2016)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Mukherjee, A., Swindlehurst, A.L.: Detecting passive eavesdroppers in the MIMO wiretap channel. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2809–2812. IEEE (2012)Google Scholar
  61. 61.
    Gulcu, T.C., Barg, A.: Achieving secrecy capacity of the wiretap channel and broadcast channel with a confidential component. IEEE Trans. Inform. Theory 63(2), 1311–1324 (2016)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Zou, Y., Wang, X., Shen, W.: Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J. Sel. Areas Commun. 31(10), 2099–2111 (2013)Google Scholar
  63. 63.
    Zou, Y., Wang, X., Shen, W.: Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Trans. Commun. 61(12), 5103–5113 (2013)Google Scholar
  64. 64.
    Jameel, F., Wyne, S., Kaddoum, G., Duong, T.Q.: A comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Commun. Surv. Tutor. 1 (2018).  https://doi.org/10.1109/COMST.2018.2865607
  65. 65.
    Zhao, N., Cao, Y., Yu, F.R., Chen, Y., Jin, M., Leung, V.C.: Artificial noise assisted secure interference networks with wireless power transfer. IEEE Trans. Veh. Technol. 67(2), 1087–1098 (2017)Google Scholar
  66. 66.
    Yang, W., Mao, J., Chen, C., Cheng, X., Yang, L.-Q., Xiang, H.-G.: Resource allocation for physical-layer security in OFDMAdownlinkwith imperfect CSI. Front. Inform. Technol. Electr. Eng. 19(3), 398–408 (2018)Google Scholar
  67. 67.
    Zheng, T.-X., Wang, H.-M., Yang, Q., Lee, M.H.: Safeguarding decentralized wireless networks using full-duplex jamming receivers. IEEE Trans. Wirel. Commun. 16(1), 278–292 (2016)Google Scholar
  68. 68.
    Tsai, S.-H., Poor, H.V.: Power allocation for artificial-noise secure MIMO precoding systems. IEEE Trans. Signal Proces. 62(13), 3479–3493 (2014)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Yang, J., Kim, I.-M., Kim, D.I.: Power-constrained optimal cooperative jamming for multiuser broadcast channel. IEEE Wirel. Commun. Lett. 2(4), 411–414 (2013)Google Scholar
  70. 70.
    Wang, H.-M., Luo, M., Xia, X.-G., Yin, Q.: Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper’s CSI. IEEE Signal Process. Lett. 20(1), 39–42 (2012)Google Scholar
  71. 71.
    Liu, Y., Li, J., Petropulu, A.P.: Destination assisted cooperative jamming for wireless physical-layer security. IEEE Trans. Inform. Forensics Secur. 8(4), 682–694 (2013)Google Scholar
  72. 72.
    Jameel, F., Wyne, S.: Secrecy outage of SWIPT in the presence of cooperating eavesdroppers. AEU-Int. J. Electr. Commun. 77, 23–26 (2017)Google Scholar
  73. 73.
    Khan, W.U., Jameel, F., Ristaniemi, T., Khan, S., Sidhu, G.A.S., Liu, J.: Joint spectral and energy efficiency optimization for downlink NOMA networks. IEEE Trans. Cogn. Commun. Netw. 1 (2019).  https://doi.org/10.1109/TCCN.2019.2945802
  74. 74.
    Ali, Z., Rao, Y., Khan, W.U., Sidhu, G.A.S.: Joint user pairing, channel assignment and power allocation in NOMA based CR systems. Appl. Sci. 9(20), 4282 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.School of Information Science and EngineeringShandong UniversityQingdaoChina
  2. 2.Department of Electrical and Computer EngineeringCOMSATS UniversityIslamabadPakistan
  3. 3.School of Physical and Electronics EngineeringHenan Polytechnic UniversityJiaozuoChina
  4. 4.Department of Electrical and Computer EngineeringCOMSATS UniversityWah Cantt.Pakistan

Personalised recommendations