Skip to main content

Cooperative Communication Techniques in Wireless-Powered Backscatter Communication: Preambles and Technical Perspective

  • Chapter
  • First Online:
Wireless-Powered Backscatter Communications for Internet of Things

Part of the book series: Internet of Things ((ITTCC))

Abstract

User cooperation is considered as a key enabling technology in wireless-powered backscatter communication (BaKcom) to improve the energy efficiency of the overall network while comparing to a traditional non-cooperative system. In light of the literature on BaKcom, most researchers consider such scenarios, where they backscatter the information directly to the receiver. The channel fading limits the system throughput between each transmitter and receiver pair. The limitation in system throughput motivates us to provide an introductory guideline and technical perspective of cooperative communication in the backscatter scenario. While this chapter mainly focuses on the technical aspects and potential applications of cooperative BaKcom, a brief historical perspective of cooperation techniques in general for wireless communications along with their implementation details, applications and research challenges is described. Section  2 of this chapter focuses on the role and uses of low powered Internet of Things (IoT) devices in future wireless communications and shows how BaKcom technology benefits such devices. In Section  3, we start our discussion by designing a system model and explaining the basic working of cooperative communication in backscatter scenarios. Based on the available literature, some potential cooperative techniques are provided, along with their comparative analysis. Finally, Section  4 concludes the chapter by providing future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cisco Visual Networking Index, Global mobile data traffic forecast update, 2016–2021 white paper, Cisco: San Jose, CA, USA

    Google Scholar 

  2. Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 74–80 (2004)

    Article  Google Scholar 

  3. Liu, K.R., Sadek, A.K., Su, W., Kwasinski, A.: Cooperative Communications and Networking. Cambridge University Press (2009)

    Google Scholar 

  4. Naqvi, S.A.R., Hassan, S.A., Pervaiz, H., Ni, Q., Musavian, L.: Self-adaptive power control mechanism in D2D enabled hybrid cellular network with mmWave small cells: an optimization approach. In: IEEE Globecom Workshops (GC Wkshps), vol. 2016, pp. 1–6. IEEE (2016)

    Google Scholar 

  5. Sun, Y., Yue, D.-W.: Special issue on cooperative wireless and mobile communications. IET Commun. 7(17), 1881–1882 (2013)

    Article  Google Scholar 

  6. Zhong, Z.-D., Ai, B., Zhu, G., Wu, H., Xiong, L., Wang, F.-G., Lei, L., Ding, J.-W., Guan, K., He, R.-S.: Dedicated Mobile Communications for High-Speed Railway. Springer (2018)

    Google Scholar 

  7. Pervaiz, H., Musavian, L., Ni, Q.: Area energy and area spectrum efficiency trade-off in 5G heterogeneous networks. In: 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 1178–1183. IEEE (2015)

    Google Scholar 

  8. Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inform. Theory 25(5), 572–584 (1979)

    Article  MathSciNet  Google Scholar 

  9. Sendonaris, A., Erkip, E., Aazhang, B.: Increasing uplink capacity via user cooperation diversity. In: Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252), p. 156. IEEE (1998)

    Google Scholar 

  10. Ahmed, E., Gharavi, H.: Cooperative vehicular networking: a survey. IEEE Trans. Intell. Transp. Syst. 19(3), 996–1014 (2018)

    Article  Google Scholar 

  11. Zhuang, W., Ismail, M.: Cooperation in wireless communication networks. IEEE Wirel. Commun. 19(2), 10–20 (2012)

    Article  Google Scholar 

  12. Zhao, Y., Adve, R., Lim, T.J.: Symbol error rate of selection amplify-and-forward relay systems. IEEE Commun. Lett. 10(11), 757–759 (2006)

    Article  Google Scholar 

  13. Zhou, Q.F., Li, Y., Lau, F.C., Vucetic, B.: Decode-and-forward two-way relaying with network coding and opportunistic relay selection. IEEE Trans. Commun. 58(11), 3070–3076 (2010)

    Article  Google Scholar 

  14. Laneman, J.N., Tse, D.N., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inform. Theory 50(12), 3062–3080 (2004)

    Article  MathSciNet  Google Scholar 

  15. Ikki, S.S., Ahmed, M.H.: Performance analysis of incremental-relaying cooperative-diversity networks over rayleigh fading channels. IET Commun. 5(3), 337–349 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hunter, T.E., Nosratinia, A.: Cooperation diversity through coding. In: Proceedings IEEE International Symposium on Information Theory, p. 220. IEEE (2002)

    Google Scholar 

  17. Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity-part I: system description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)

    Article  Google Scholar 

  18. Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Trans. Commun. 51(11), 1939–1948 (2003)

    Google Scholar 

  19. 3rd Generation Partnership Project (3GPP), TS 36.141. LTE; Evolved Universal terrestrial radio access (e-utra); base station (BS) (2015). https://www.etsi.org/deliver/etsi_ts/136100_136199/136141/13.06.00_60/ts_136141v130600p.pdf. Accessed 8 Oct 2019

  20. Chen, J., Hu, K., Wang, Q., Sun, Y., Shi, Z., He, S.: Narrowband internet of things: implementations and applications. IEEE Internet of Things J. 4(6), 2309–2314 (2017)

    Article  Google Scholar 

  21. Li, Y., Chi, K., Chen, H., Wang, Z., Zhu, Y.: Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things J. 5(3), 1474–1484 (2018)

    Article  Google Scholar 

  22. Nauman, A., Jamshed, M.A., Ahmad, Y., Ali, R., Zikria, Y.B., Kim, S.W.: An intelligent deterministic D2D communication in narrow-band Internet of Things. In: 15th International Wireless Communications & Mobile Computing Conference (IWCMC), vol. 2019, pp. 2111–2115. IEEE (2019)

    Google Scholar 

  23. Islam, S.R., Avazov, N., Dobre, O.A., Kwak, K.-S.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2016)

    Article  Google Scholar 

  24. Kim, J.-B., Lee, I.-H.: Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun. Lett. 19(11), 2037–2040 (2015)

    Article  Google Scholar 

  25. Ding, Z., Dai, H., Poor, H.V.: Relay selection for cooperative NOMA. IEEE Wirel. Communi. Lett. 5(4), 416–419 (2016)

    Article  Google Scholar 

  26. Ehsan, S., Hamdaoui, B.: A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Commun. Surv. Tutor. 14(2), 265–278 (2011)

    Article  Google Scholar 

  27. Jamshed, M.A., Amjad, O., Zeydan, E.: Multicore energy efficient scheduling with energy harvesting for wireless multimedia sensor networks. In: International Multi-topic Conference (INMIC), vol. 2017, pp. 1–5. IEEE (2017)

    Google Scholar 

  28. Jamshed, M.A., Amjad, O., Khan, M.F.: Energy optimized routing with directional antennas and tagging for multimedia sensor networks. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–5. IEEE (2018)

    Google Scholar 

  29. Aishwarya, M., Kirthiga, S.: Relay assisted cooperative communication for wireless sensor networks. In: 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), pp. 1–6. IEEE (2018)

    Google Scholar 

  30. Mansourkiaie, F., Ahmed, M.H.: Per-node traffic load in cooperative wireless sensor networks. IEEE Commun. Lett. 20(2), 344–347 (2015)

    Article  Google Scholar 

  31. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. In: IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334–2360 (2019). https://doi.org/10.1109/COMST.2019.2902862

  32. Tran, T.X., Hajisami, A., Pompili, D.: Cooperative hierarchical caching in 5G cloud radio access networks. IEEE Netw. 31(4), 35–41 (2017)

    Article  Google Scholar 

  33. Stockman, H.: Communication by means of reflected power. Proc. IRE 36(10), 1196–1204 (1948)

    Article  Google Scholar 

  34. Zhang, P., Gummeson, J., Ganesan, D.: Blink: a high throughput link layer for backscatter communication. In: Proceedings of the 10th International Conference on Mobile systems, Applications, and Services, pp. 99–112. ACM (2012)

    Google Scholar 

  35. Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient backscatter: wireless communication out of thin air. In: ACM SIGCOMM Computer Communication Review, vol. 43, pp. 39–50. ACM (2013)

    Google Scholar 

  36. Parks, A.N., Liu, A., Gollakota, S., Smith, J.R.: Turbocharging ambient backscatter communication. In: ACM SIGCOMM Computer Communication Review, vol. 44, pp. 619–630. ACM (2014)

    Google Scholar 

  37. Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient backscatter communications: a contemporary survey. IEEE Commun. Surv. Tutor. 20(4), 2889–2922 (2018)

    Article  Google Scholar 

  38. Lyu, B., Hoang, D.T., Yang, Z.: User cooperation in wireless-powered backscatter communication networks. IEEE Wirel. Commun. Lett. 8(2), 632–635 (2019)

    Article  Google Scholar 

  39. Gong, S., Xu, J., Niyato, D., Huang, X., Han, Z.: Backscatter-aided cooperative relay communications in wireless-powered hybrid radio networks. In: IEEE Network, vol. 33, no. 5, pp. 234–241 (2019). https://doi.org/10.1109/MNET.2019.1800335

  40. Yang, G., Zhang, Q., Liang, Y.-C.: Cooperative ambient backscatter communications for green Internet-of-Things. IEEE Internet of Things J. 5(2), 1116–1130 (2018)

    Article  Google Scholar 

  41. Kellogg, B., Talla, V., Gollakota, S., Smith, J.R.: Passive Wi-Fi: bringing low power to Wi-Fi transmissions. In: 13th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 16), pp. 151–164 (2016)

    Google Scholar 

  42. Liu, W., Huang, K., Zhou, X., Durrani, S.: Next generation backscatter communication: systems, techniques, and applications. EURASIP J. Wirel. Commun. Network. 2019(1), 69 (2019)

    Article  Google Scholar 

  43. Boyer, C., Roy, S.: Backscatter communication and RFID: coding, energy, and MIMO analysis. In: IEEE Transactions on Communications, vol. 62, no. 3, pp. 770–785 (2014). https://doi.org/10.1109/TCOMM.2013.120713.130417

  44. Munir, S.W., Amjad, O., Zeydan, E., Ercan, A.Ö.: Optimization and analysis of WLAN RF energy harvesting system architecture. In: International Symposium on Wireless Communication Systems (ISWCS), vol. 2016, pp. 429–433. IEEE (2016)

    Google Scholar 

  45. Amjad, O., Munir S.W., Imeci, S.T., Ercan, A.Ö.: Design and implementation of dual band microstrip patch antenna for WLAN energy harvesting system. Appl. Comput. Electromagn. Soc. J (2018)

    Google Scholar 

  46. Tentzeris, M.M., Kawahara, Y.: Novel energy harvesting technologies for ICT applications. In: International Symposium on Applications and the Internet, vol. 2008, pp. 373–376. IEEE (2008)

    Google Scholar 

  47. Valenta, C.R., Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15(4), 108–120 (2014)

    Article  Google Scholar 

  48. Bi, S., Ho, C.K., Zhang, R.: Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53(4), 117–125 (2015)

    Article  Google Scholar 

  49. Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J.: Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun. Surv. Tutor. 20(1), 264–302 (2017)

    Article  Google Scholar 

  50. Zhang, P., Hu, P., Pasikanti, V., Ganesan, D.: Ekhonet: high speed ultra low-power backscatter for next generation sensors. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 557–568. ACM (2014)

    Google Scholar 

  51. Lyu, B., Yang, Z., Guo, H., Tian, F., Gui, G.: Relay cooperation enhanced backscatter communication for Internet-of-Things. IEEE Internet of Things J. 6(2), 2860–2871 (2018)

    Article  Google Scholar 

  52. Bharadia, D., Joshi, K.R., Kotaru, M., Katti, S.: Backfi: high throughput WiFi backscatter. ACM SIGCOMM Comput. Commun. Rev. 45(4), 283–296 (2015)

    Article  Google Scholar 

  53. Liu, T., Qu, X., Tan, W., Cheng, Y.: An energy efficient cooperative communication scheme in ambient RF powered sensor networks. IEEE Access 7, 86545–86554 (2019)

    Article  Google Scholar 

  54. Haider, S.K., Jamshed, M.A., Jiang, A., Pervaiz, H.: An energy efficient cluster-heads re-usability mechanism for wireless sensor networks. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)

    Google Scholar 

  55. Wang, W., Wang, Q.: Price the QoE, not the data: SMP-economic resource allocation in wireless multimedia Internet of Things. IEEE Commun. Mag. 56(9), 74–79 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Jamshed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamshed, M.A., Pervaiz, H., Ahmed, S.H., Alam, A.S. (2021). Cooperative Communication Techniques in Wireless-Powered Backscatter Communication: Preambles and Technical Perspective. In: Jameel, F., Hassan, S. (eds) Wireless-Powered Backscatter Communications for Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-46201-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46201-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46200-0

  • Online ISBN: 978-3-030-46201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics