Abstract
In this paper, we develop a forecasting model for the growth of Cryogenic Electron Microscopy (Cryo-EM) experimental data time series using autoregressive (AR) model. We employ the optimal modeling order that maximizes the estimation accuracy while maintaining the least normalized prediction error. The proposed model has been efficiently used to forecast the growth of cryo-EM data for the next 10 years, 2019–2028. The time series for the number of released three-dimensional Electron Microscopy (3DEM) images along with the time series of the annual number of 3DEM achieving resolution 10 Å or better are used. The data was collected from the public Electron Microscopy Data Bank (EMDB). The simulation results showed that the optimal model orders to estimate both datasets are \( AR\left( 5 \right) \) and \( AR\left( 6 \right) \) respectively. Consequently, the optimal models obtained an estimation accuracy of \( 96.8\%, \) and \( 85\% \) for 3DEM experiments time series and 3DEM resolutions time series, respectively. Hence, the forecasting results reveal an exponential increasing behavior in the future growth of annual released of 3DEM and, similarly, for the annual number of 3DEM achieving resolution 10 Å or better.
Keywords
- Protein structure
- Electron Microscopy
- 3DEM
- Single particle
- Tomography
- X-ray crystallography
- NMR
- Auto-regressive modeling
- Auto-regressive prediction
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Rappe, A.K., Casewit, C.J.R.: Molecular Mechanics Across Chemistry. University Science Books, Mill Valley (1997)
Siegel, G.J., et al.: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 7th edn. Elsevier Academic Press, Amsterdam (2006)
Blundell, T.L., et al.: Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc. Natl. Acad. Sci. U.S.A. (PNAS) 75(1), 180–184 (1978)
Weber, I.T.: Evaluation of homology modeling of HIV protease. Proteins Struct. Funct. Bioinf. 7(2), 172–184 (1990)
Sussman, J.L., et al.: Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. Sect. D: Biol. Crystallogr. 54(6–1), 1078–1084 (1998)
Berman, H., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)
Bernstein, F.C., et al.: The Protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112(3), 535–542 (1977)
Zheng, H., et al.: X-ray crystallography over the past decade for novel drug discovery – where are we heading next? Expert Opin. Drug Discov. 10(9), 975–989 (2015)
Pearson, A.R., Mozzarelli, A.: X-ray crystallography marries spectroscopy to unveil structure and function of biological macromolecules. Biochimica et Biophysica Acta (BBA) - Proteins Proteomics 1814(6), 731–733 (2011)
Emwas, A.-H.M.: The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In: Bjerrum, J.T. (ed.) Metabonomics. MMB, vol. 1277, pp. 161–193. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2377-9_13
Yusupova, G., Yusupov, M.: Ribosome biochemistry in crystal structure determination. RNA (New York, N.Y.) 21(4), 771–773 (2015)
Wang, L., Sigworth, F.J.: Cryo-EM and single particles. Physiology 21(1), 13–18 (2006)
Mitra, K., Frank, J.: Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. Annu. Rev. Biophys. Biomol. Struct. 35, 299–317 (2006)
Khatter, H., et al.: Structure of the human 80S ribosome. Nature 520, 640 (2015)
Liu, Z., et al.: 2.9 Å resolution cryo-EM 3D reconstruction of close-packed virus particles. Structure (London, England: 1993) 24(2), 319–328 (2016)
Kühlbrandt, W.: Cryo-EM enters a new era. eLife 3, e03678–e03678 (2014)
Liu, S., et al.: Atomic resolution structure determination by the cryo-EM method MicroED. Protein Sci. 26(1), 8–15 (2017)
Kühlbrandt, W.: The resolution revolution. Science 343(6178), 1443 (2014)
Bottcher, B., Wynne, S.A., Crowther, R.A.: Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386(6620), 88–91 (1997)
Conway, J.F., et al.: Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386(6620), 91–94 (1997)
Lawson, C.L., et al.: EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res. 39(suppl 1), D456–D464 (2011)
Zhang, X., et al.: 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141(3), 472–482 (2010)
Baker, M.L., et al.: Ab initio modeling of the herpesvirus VP26 core domain assessed by CryoEM density. PLoS Comput. Biol. 2(10), e146 (2006)
Villa, E., et al.: Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. (PNAS) 106(4), 1063–1068 (2009)
Amunts, A., et al.: Structure of the yeast mitochondrial large ribosomal subunit. Science 343(6178), 1485–1489 (2014)
Bell, D.C., et al.: Successful application of low voltage electron microscopy to practical materials problems. Ultramicroscopy 145, 56–65 (2014)
Fischer, N., et al.: Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520(7548), 567–570 (2015)
Bartesaghi, A., et al.: 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348(6239), 1147–1151 (2015)
Callaway, E.: The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525(7568), 172–174 (2015)
Bammes, B.E., et al.: Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. J. Struct. Biol. 177(3), 589–601 (2012)
Milazzo, A.-C., et al.: Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. J. Struct. Biol. 176(3), 404–408 (2011)
Bai, X.-C., et al.: Ribosome structures to ar-atomic resolution from thirty thousand cryo-EM particles, vol. 2 (2013). Editor W. Kühlbrandt
Al Nasr, K., et al.: Analytical approaches to improve accuracy in solving the protein topology problem. Molecules 23(2), 28 (2018)
Al Nasr, K., et al.: PEM-fitter: a coarse-grained method to validate protein candidate models. J. Comput. Biol. 25, 21–32 (2018)
Biswas, A., et al.: An effective computational method incorporating multiple secondary structure predictions in topology determination for cryo-EM images. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(3), 578–586 (2017)
Al Nasr, K., He, J.: Constrained cyclic coordinate descent for cryo-EM images at medium resolutions: beyond the protein loop closure problem. Robotica 34(8), 1777–1790 (2016)
Pirovano, W., Heringa, J.: Protein secondary structure prediction. Methods Mol. Biol. 609, 327–348 (2010). ISBN 978-1-60327-240-7. PMID 2019
Imdadullah, Time Series Analysis. Basic Statistics and Data Analysis (2014). http://itfeature.com/time-series-analysis-and-forecasting/time-series-analysis-forecasting
Al-Haija, Q.A., Mao, Q., Al Nasr, K.: Forecasting the number of monthly active Facebook and Twitter worldwide users using ARMA model. J. Comput. Sci. 15(4), 499–510 (2019). https://doi.org/10.3844/jcssp.2019.499.510
Huang, J., et al.: Forecasting solar radiation on an hourly time scale using a Coupled Autoregressive and Dynamical System (CARDS) model. Sol. Energy 87, 136–149 (2013). https://doi.org/10.1016/j.solener.2012.10.012
Lydia, M., et al.: Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers. Manage. 112, 115–124 (2016). https://doi.org/10.1016/j.enconman.2016.01.007
Abadi, A., et al.: Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16(2), 653–662 (2015)
Ruiz, L.G.B., et al.: An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies 9(9), 684 (2016). https://doi.org/10.3390/en9090684
Al-Haija, Q.A., Tawalbeh, L.: Autoregressive modeling and prediction of annual worldwide cybercrimes for cloud environments. In: IEEE 10th International Conference on Information and Communication Systems (ICICS 2019) (2019)
Niedwiecki, M., Cioek, M.: Akaike’s final prediction error criterion revisited. In: 40th International Conference on Telecommunications & Signal Processing (ICTSP 2017) (2017)
Al Nasr, K., Al-Haija, Q.A.: Forecasting the growth of structures from NMR and X-ray crystallography experiments released per year. J. Inf. Knowl. Manag. (JIKM) 19(1), 1–12 (2019). Special Issue
Acknowledgments
This work was supported by the US National Science Foundation (NSF) Research Initiation Award (RIA) (HRD: 1600919) and the NIH Research grant (R15-AREA: 1R15GM126509-01).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Abu Al-Haija, Q., Al Nasr, K. (2020). Forecasting Model for the Annual Growth of Cryogenic Electron Microscopy Data. In: Măndoiu, I., Murali, T., Narasimhan, G., Rajasekaran, S., Skums, P., Zelikovsky, A. (eds) Computational Advances in Bio and Medical Sciences. ICCABS 2019. Lecture Notes in Computer Science(), vol 12029. Springer, Cham. https://doi.org/10.1007/978-3-030-46165-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-46165-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46164-5
Online ISBN: 978-3-030-46165-2
eBook Packages: Computer ScienceComputer Science (R0)