Skip to main content

Forecasting Model for the Annual Growth of Cryogenic Electron Microscopy Data

Part of the Lecture Notes in Computer Science book series (LNBI,volume 12029)

Abstract

In this paper, we develop a forecasting model for the growth of Cryogenic Electron Microscopy (Cryo-EM) experimental data time series using autoregressive (AR) model. We employ the optimal modeling order that maximizes the estimation accuracy while maintaining the least normalized prediction error. The proposed model has been efficiently used to forecast the growth of cryo-EM data for the next 10 years, 2019–2028. The time series for the number of released three-dimensional Electron Microscopy (3DEM) images along with the time series of the annual number of 3DEM achieving resolution 10 Å or better are used. The data was collected from the public Electron Microscopy Data Bank (EMDB). The simulation results showed that the optimal model orders to estimate both datasets are \( AR\left( 5 \right) \) and \( AR\left( 6 \right) \) respectively. Consequently, the optimal models obtained an estimation accuracy of \( 96.8\%, \) and \( 85\% \) for 3DEM experiments time series and 3DEM resolutions time series, respectively. Hence, the forecasting results reveal an exponential increasing behavior in the future growth of annual released of 3DEM and, similarly, for the annual number of 3DEM achieving resolution 10 Å or better.

Keywords

  • Protein structure
  • Electron Microscopy
  • 3DEM
  • Single particle
  • Tomography
  • X-ray crystallography
  • NMR
  • Auto-regressive modeling
  • Auto-regressive prediction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rappe, A.K., Casewit, C.J.R.: Molecular Mechanics Across Chemistry. University Science Books, Mill Valley (1997)

    Google Scholar 

  2. Siegel, G.J., et al.: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 7th edn. Elsevier Academic Press, Amsterdam (2006)

    Google Scholar 

  3. Blundell, T.L., et al.: Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc. Natl. Acad. Sci. U.S.A. (PNAS) 75(1), 180–184 (1978)

    CrossRef  Google Scholar 

  4. Weber, I.T.: Evaluation of homology modeling of HIV protease. Proteins Struct. Funct. Bioinf. 7(2), 172–184 (1990)

    CrossRef  Google Scholar 

  5. Sussman, J.L., et al.: Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. Sect. D: Biol. Crystallogr. 54(6–1), 1078–1084 (1998)

    CrossRef  Google Scholar 

  6. Berman, H., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    CrossRef  Google Scholar 

  7. Bernstein, F.C., et al.: The Protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112(3), 535–542 (1977)

    CrossRef  Google Scholar 

  8. Zheng, H., et al.: X-ray crystallography over the past decade for novel drug discovery – where are we heading next? Expert Opin. Drug Discov. 10(9), 975–989 (2015)

    CrossRef  Google Scholar 

  9. Pearson, A.R., Mozzarelli, A.: X-ray crystallography marries spectroscopy to unveil structure and function of biological macromolecules. Biochimica et Biophysica Acta (BBA) - Proteins Proteomics 1814(6), 731–733 (2011)

    Google Scholar 

  10. Emwas, A.-H.M.: The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In: Bjerrum, J.T. (ed.) Metabonomics. MMB, vol. 1277, pp. 161–193. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2377-9_13

    CrossRef  Google Scholar 

  11. Yusupova, G., Yusupov, M.: Ribosome biochemistry in crystal structure determination. RNA (New York, N.Y.) 21(4), 771–773 (2015)

    Google Scholar 

  12. Wang, L., Sigworth, F.J.: Cryo-EM and single particles. Physiology 21(1), 13–18 (2006)

    CrossRef  Google Scholar 

  13. Mitra, K., Frank, J.: Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. Annu. Rev. Biophys. Biomol. Struct. 35, 299–317 (2006)

    CrossRef  Google Scholar 

  14. Khatter, H., et al.: Structure of the human 80S ribosome. Nature 520, 640 (2015)

    CrossRef  Google Scholar 

  15. Liu, Z., et al.: 2.9 Å resolution cryo-EM 3D reconstruction of close-packed virus particles. Structure (London, England: 1993) 24(2), 319–328 (2016)

    CrossRef  Google Scholar 

  16. Kühlbrandt, W.: Cryo-EM enters a new era. eLife 3, e03678–e03678 (2014)

    CrossRef  Google Scholar 

  17. Liu, S., et al.: Atomic resolution structure determination by the cryo-EM method MicroED. Protein Sci. 26(1), 8–15 (2017)

    CrossRef  MathSciNet  Google Scholar 

  18. Kühlbrandt, W.: The resolution revolution. Science 343(6178), 1443 (2014)

    CrossRef  Google Scholar 

  19. Bottcher, B., Wynne, S.A., Crowther, R.A.: Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386(6620), 88–91 (1997)

    CrossRef  Google Scholar 

  20. Conway, J.F., et al.: Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386(6620), 91–94 (1997)

    CrossRef  Google Scholar 

  21. Lawson, C.L., et al.: EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res. 39(suppl 1), D456–D464 (2011)

    CrossRef  Google Scholar 

  22. Zhang, X., et al.: 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141(3), 472–482 (2010)

    CrossRef  Google Scholar 

  23. Baker, M.L., et al.: Ab initio modeling of the herpesvirus VP26 core domain assessed by CryoEM density. PLoS Comput. Biol. 2(10), e146 (2006)

    CrossRef  Google Scholar 

  24. Villa, E., et al.: Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. (PNAS) 106(4), 1063–1068 (2009)

    CrossRef  Google Scholar 

  25. Amunts, A., et al.: Structure of the yeast mitochondrial large ribosomal subunit. Science 343(6178), 1485–1489 (2014)

    CrossRef  Google Scholar 

  26. Bell, D.C., et al.: Successful application of low voltage electron microscopy to practical materials problems. Ultramicroscopy 145, 56–65 (2014)

    CrossRef  Google Scholar 

  27. Fischer, N., et al.: Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520(7548), 567–570 (2015)

    CrossRef  Google Scholar 

  28. Bartesaghi, A., et al.: 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348(6239), 1147–1151 (2015)

    CrossRef  Google Scholar 

  29. Callaway, E.: The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525(7568), 172–174 (2015)

    CrossRef  Google Scholar 

  30. Bammes, B.E., et al.: Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. J. Struct. Biol. 177(3), 589–601 (2012)

    CrossRef  Google Scholar 

  31. Milazzo, A.-C., et al.: Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. J. Struct. Biol. 176(3), 404–408 (2011)

    CrossRef  Google Scholar 

  32. Bai, X.-C., et al.: Ribosome structures to ar-atomic resolution from thirty thousand cryo-EM particles, vol. 2 (2013). Editor W. Kühlbrandt

    Google Scholar 

  33. Al Nasr, K., et al.: Analytical approaches to improve accuracy in solving the protein topology problem. Molecules 23(2), 28 (2018)

    CrossRef  Google Scholar 

  34. Al Nasr, K., et al.: PEM-fitter: a coarse-grained method to validate protein candidate models. J. Comput. Biol. 25, 21–32 (2018)

    CrossRef  Google Scholar 

  35. Biswas, A., et al.: An effective computational method incorporating multiple secondary structure predictions in topology determination for cryo-EM images. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(3), 578–586 (2017)

    CrossRef  Google Scholar 

  36. Al Nasr, K., He, J.: Constrained cyclic coordinate descent for cryo-EM images at medium resolutions: beyond the protein loop closure problem. Robotica 34(8), 1777–1790 (2016)

    CrossRef  Google Scholar 

  37. Pirovano, W., Heringa, J.: Protein secondary structure prediction. Methods Mol. Biol. 609, 327–348 (2010). ISBN 978-1-60327-240-7. PMID 2019

    Google Scholar 

  38. Imdadullah, Time Series Analysis. Basic Statistics and Data Analysis (2014). http://itfeature.com/time-series-analysis-and-forecasting/time-series-analysis-forecasting

  39. Al-Haija, Q.A., Mao, Q., Al Nasr, K.: Forecasting the number of monthly active Facebook and Twitter worldwide users using ARMA model. J. Comput. Sci. 15(4), 499–510 (2019). https://doi.org/10.3844/jcssp.2019.499.510

    CrossRef  Google Scholar 

  40. Huang, J., et al.: Forecasting solar radiation on an hourly time scale using a Coupled Autoregressive and Dynamical System (CARDS) model. Sol. Energy 87, 136–149 (2013). https://doi.org/10.1016/j.solener.2012.10.012

    CrossRef  Google Scholar 

  41. Lydia, M., et al.: Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers. Manage. 112, 115–124 (2016). https://doi.org/10.1016/j.enconman.2016.01.007

    CrossRef  Google Scholar 

  42. Abadi, A., et al.: Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16(2), 653–662 (2015)

    Google Scholar 

  43. Ruiz, L.G.B., et al.: An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies 9(9), 684 (2016). https://doi.org/10.3390/en9090684

    CrossRef  Google Scholar 

  44. Al-Haija, Q.A., Tawalbeh, L.: Autoregressive modeling and prediction of annual worldwide cybercrimes for cloud environments. In: IEEE 10th International Conference on Information and Communication Systems (ICICS 2019) (2019)

    Google Scholar 

  45. Niedwiecki, M., Cioek, M.: Akaike’s final prediction error criterion revisited. In: 40th International Conference on Telecommunications & Signal Processing (ICTSP 2017) (2017)

    Google Scholar 

  46. Al Nasr, K., Al-Haija, Q.A.: Forecasting the growth of structures from NMR and X-ray crystallography experiments released per year. J. Inf. Knowl. Manag. (JIKM) 19(1), 1–12 (2019). Special Issue

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Foundation (NSF) Research Initiation Award (RIA) (HRD: 1600919) and the NIH Research grant (R15-AREA: 1R15GM126509-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Al Nasr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abu Al-Haija, Q., Al Nasr, K. (2020). Forecasting Model for the Annual Growth of Cryogenic Electron Microscopy Data. In: Măndoiu, I., Murali, T., Narasimhan, G., Rajasekaran, S., Skums, P., Zelikovsky, A. (eds) Computational Advances in Bio and Medical Sciences. ICCABS 2019. Lecture Notes in Computer Science(), vol 12029. Springer, Cham. https://doi.org/10.1007/978-3-030-46165-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46165-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46164-5

  • Online ISBN: 978-3-030-46165-2

  • eBook Packages: Computer ScienceComputer Science (R0)