Skip to main content

Pattern-Based Anomaly Detection in Mixed-Type Time Series

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

Abstract

The present-day accessibility of technology enables easy logging of both sensor values and event logs over extended periods. In this context, detecting abnormal segments in time series data has become an important data mining task. Existing work on anomaly detection focuses either on continuous time series or discrete event logs and not on the combination. However, in many practical applications, the patterns extracted from the event log can reveal contextual and operational conditions of a device that must be taken into account when predicting anomalies in the continuous time series. This paper proposes an anomaly detection method that can handle mixed-type time series. The method leverages frequent pattern mining techniques to construct an embedding of mixed-type time series on which an isolation forest is trained. Experiments on several real-world univariate and multivariate time series, as well as a synthetic mixed-type time series, show that our anomaly detection algorithm outperforms state-of-the-art anomaly detection techniques such as MatrixProfile, Pav, Mifpod and Fpof.

L. Feremans and V. Vercruyssen—These authors contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://adrem.uantwerpen.be/bibrem/pubs/pbad.pdf.

  2. 2.

    See Table 4 in Appendix A.2 for details on setting preprocessing parameters.

  3. 3.

    Implementation of Pbad: https://bitbucket.org/len_feremans/pbad/.

References

  1. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)

    Article  Google Scholar 

  2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  3. Chen, X.Y., Zhan, Y.Y.: Multi-scale anomaly detection algorithm based on infrequent pattern of time series. J. Comput. Appl. Math. 214(1), 227–237 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cheng, H., Yan, X., Han, J., Hsu, C.W.: Discriminative frequent pattern analysis for effective classification. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 716–725. IEEE (2007)

    Google Scholar 

  5. Decroos, T., Schütte, K., De Beéck, T.O., Vanwanseele, B., Davis, J.: AMIE: automatic monitoring of indoor exercises. In: Brefeld, U., et al. (eds.) ECML PKDD 2018, Part III. LNCS (LNAI), vol. 11053, pp. 424–439. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_26

    Chapter  Google Scholar 

  6. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  7. Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation of outlier detection algorithms: experiments and analyses. Pattern Recogn. 74, 406–421 (2018)

    Article  Google Scholar 

  8. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2. In: Berendt, B., et al. (eds.) ECML PKDD 2016, Part III. LNCS (LNAI), vol. 9853, pp. 36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_8

    Chapter  Google Scholar 

  9. Gershenfeld, N., Krikorian, R., Cohen, D.: The internet of things. Sci. Am. 291(4), 76–81 (2004)

    Article  Google Scholar 

  10. He, Z., Xu, X., Huang, Z.J., Deng, S.: FP-outlier: frequent pattern based outlier detection. Comput. Scie. Inf. Syst. 2(1), 103–118 (2005)

    Article  Google Scholar 

  11. Hemalatha, C.S., Vaidehi, V., Lakshmi, R.: Minimal infrequent pattern based approach for mining outliers in data streams. Expert Syst. Appl. 42(4), 1998–2012 (2015)

    Article  Google Scholar 

  12. Karlsson, I., Papapetrou, P., Boström, H.: Generalized random shapelet forests. Data Min. Knowl. Disc. 30(5), 1053–1085 (2016). https://doi.org/10.1007/s10618-016-0473-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11. ACM (2003)

    Google Scholar 

  14. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. ESANN (2015)

    Google Scholar 

  15. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 473–484. SIAM (2009)

    Google Scholar 

  16. Ting, K.M., Liu, F.T., Zhou, Z.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining (ICDM), pp. 413–422. IEEE, December 2008

    Google Scholar 

  17. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 947–956. ACM (2009)

    Google Scholar 

  18. Yeh, C.C.M., et al.: Matrix profile i: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1317–1322. IEEE (2016)

    Google Scholar 

  19. Zaki, M.J., Meira, W.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the VLAIO SBO HYMOP project for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Vercruyssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feremans, L., Vercruyssen, V., Cule, B., Meert, W., Goethals, B. (2020). Pattern-Based Anomaly Detection in Mixed-Type Time Series. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics