Skip to main content

Robust Anomaly Detection in Images Using Adversarial Autoencoders

  • Conference paper
  • First Online:
Book cover Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

Abstract

Reliably detecting anomalies in a given set of images is a task of high practical relevance for visual quality inspection, surveillance, or medical image analysis. Autoencoder neural networks learn to reconstruct normal images, and hence can classify those images as anomalies, where the reconstruction error exceeds some threshold. Here we analyze a fundamental problem of this approach when the training set is contaminated with a small fraction of outliers. We find that continued training of autoencoders inevitably reduces the reconstruction error of outliers, and hence degrades the anomaly detection performance. In order to counteract this effect, an adversarial autoencoder architecture is adapted, which imposes a prior distribution on the latent representation, typically placing anomalies into low likelihood-regions. Utilizing the likelihood model, potential anomalies can be identified and rejected already during training, which results in an anomaly detector that is significantly more robust to the presence of outliers during training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-generating distribution. J. Mach. Learn. Res. 15(1), 3563–3593 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as generative models. Adv. Neural Inf. Process. Syst. 1, 899–907 (2013)

    Google Scholar 

  3. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: International Conference on Pattern Recognition, pp. 3121–3124. IEEE (2010)

    Google Scholar 

  4. Chan, P.P., Lin, Z., Hu, X., Tsang, E.C., Yeung, D.S.: Sensitivity based robust learning for stacked autoencoder against evasion attack. Neurocomputing 267, 572–580 (2017)

    Article  Google Scholar 

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  6. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  7. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410 (2017)

  8. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2, 2672–2680 (2014)

    Google Scholar 

  9. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Dordrecht (1980)

    Book  Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  11. Japkowicz, N., Myers, C., Gluck, M., et al.: A novelty detection approach to classification. In: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 1, pp. 518–523 (1995)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2015). http://arxiv.org/abs/1412.6980

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (2014)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Leveau, V., Joly, A.: Adversarial autoencoders for novelty detection. Technical report, Inria - Sophia Antipolis (2017). https://hal.inria.fr/hal-01636617

  16. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  17. Ruff, L., et al.: Deep one-class classification. In: Proceedings of the International Conference on Machine Learning, pp. 4390–4399 (2018)

    Google Scholar 

  18. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  19. Shah, M.P., Merchant, S., Awate, S.P.: Abnormality detection using deep neural networks with robust quasi-norm autoencoding and semi-supervised learning. In: Proceedings of the 15th International Symposium on Biomedical Imaging, pp. 568–572. IEEE (2018)

    Google Scholar 

  20. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  21. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Williams, G., Baxter, R., He, H., Hawkins, S., Gu, L.: A comparative study of RNN for outlier detection in data mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 709–712. IEEE (2002)

    Google Scholar 

  23. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  24. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: Proceedings of the International Conference on Machine Learning, pp. 1100–1109 (2016)

    Google Scholar 

  25. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674. ACM (2017)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibilities for its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Beggel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beggel, L., Pfeiffer, M., Bischl, B. (2020). Robust Anomaly Detection in Images Using Adversarial Autoencoders. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics