Skip to main content

Trade-Offs in Large-Scale Distributed Tuplewise Estimation And Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11907))

  • 1377 Accesses

Abstract

The development of cluster computing frameworks has allowed practitioners to scale out various statistical estimation and machine learning algorithms with minimal programming effort. This is especially true for machine learning problems whose objective function is nicely separable across individual data points, such as classification and regression. In contrast, statistical learning tasks involving pairs (or more generally tuples) of data points—such as metric learning, clustering or ranking—do not lend themselves as easily to data-parallelism and in-memory computing. In this paper, we investigate how to balance between statistical performance and computational efficiency in such distributed tuplewise statistical problems. We first propose a simple strategy based on occasionally repartitioning data across workers between parallel computation stages, where the number of repartitioning steps rules the trade-off between accuracy and runtime. We then present some theoretical results highlighting the benefits brought by the proposed method in terms of variance reduction, and extend our results to design distributed stochastic gradient descent algorithms for tuplewise empirical risk minimization. Our results are supported by numerical experiments in pairwise statistical estimation and learning on synthetic and real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively, for scalability purposes, one may instead work with their incomplete counterparts, namely (7) and (9) respectively.

  2. 2.

    When H is nonsmooth in \(\theta \), a subgradient may be used instead of the gradient.

  3. 3.

    http://odds.cs.stonybrook.edu/shuttle-dataset/.

References

  1. Arjevani, Y., Shamir, O.: Communication complexity of distributed convex learning and optimization. In: NIPS (2015)

    Google Scholar 

  2. Balcan, M.F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity and privacy. In: COLT (2012)

    Google Scholar 

  3. Bekkerman, R., Bilenko, M., Langford, J.: Scaling Up Machine Learning: Parallel and Distributed Approaches. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  4. Bellet, A., Liang, Y., Garakani, A.B., Balcan, M.F., Sha, F.: A distributed frank-wolfe algorithm for communication-efficient sparse learning. In: SDM (2015)

    Google Scholar 

  5. Bertail, P., Tressou, J.: Incomplete generalized U-statistics for food risk assessment. Biometrics 62(1), 66–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blom, G.: Some properties of incomplete \({U}\)-statistics. Biometrika 63(3), 573–580 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bottou, L., Bousquet, O.: The Tradeoffs of large scale learning. In: NIPS (2007)

    Google Scholar 

  8. Boyd, S.P., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  9. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends Mach. Learn. 8(3–4), 231–357 (2015)

    Article  MATH  Google Scholar 

  10. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink™: stream and batch processing in a single engine. IEEE Data Eng. Bull. 38(4), 28–38 (2015)

    Google Scholar 

  11. Clémençon, S.: A statistical view of clustering performance through the theory of U-processes. J. Multivar. Anal. 124, 42–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clémençon, S., Bellet, A., Colin, I.: Scaling-up empirical risk minimization: optimization of incomplete U-statistics. J. Mach. Learn. Res. 13, 165–202 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and empirical risk minimization of \({U}\)-statistics. Ann. Stat. 36(2), 844–874 (2008)

    Article  MATH  Google Scholar 

  14. Clémençon, S., Robbiano, S.: Building confidence regions for the ROC surface. Pattern Recogn. Lett. 46, 67–74 (2014)

    Article  Google Scholar 

  15. Daumé III, H., Phillips, J.M., Saha, A., Venkatasubramanian, S.: Protocols for learning classifiers on distributed data. In: AISTATS (2012)

    Google Scholar 

  16. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  17. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293–325 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jordan, M.: On statistics, computation and scalability. Bernoulli 19(4), 1378–1390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, A.: \({U}\)-statistics: Theory and Practice. Marcel Dekker Inc., New York (1990)

    MATH  Google Scholar 

  20. Papa, G., Bellet, A., Clémençon, S.: SGD algorithms based on incomplete U-statistics: large-scale minimization of empirical risk. In: NIPS (2015)

    Google Scholar 

  21. de la Pena, V., Giné, E.: Decoupling: From Dependence to Independence. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0537-1

    Book  Google Scholar 

  22. Smith, V., Forte, S., Ma, C., Takác, M., Jordan, M.I., Jaggi, M.: CoCoA: a general framework for communication-efficient distributed optimization. J. Mach. Learn. Res. 18(230), 1–49 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Van Der Vaart, A.: Asymptotic Statistics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. Vogel, R., Bellet, A., Clémençon, S.: A probabilistic theory of supervised similarity learning for pointwise ROC curve optimization. In: ICML (2018)

    Google Scholar 

  25. Xing, E.P., et al.: Petuum: a new platform for distributed machine learning on big data. IEEE Trans. Big Data 1(2), 49–67 (2015)

    Article  Google Scholar 

  26. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: HotCloud (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Vogel .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 462 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vogel, R., Bellet, A., Clémençon, S., Jelassi, O., Papa, G. (2020). Trade-Offs in Large-Scale Distributed Tuplewise Estimation And Learning. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11907. Springer, Cham. https://doi.org/10.1007/978-3-030-46147-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46147-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46146-1

  • Online ISBN: 978-3-030-46147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics