Abstract
Child malnutrition results in millions of deaths every year. This condition is a potential problem in Peruvian society, especially in the rural parts of the country. The consequences of malnutrition range from physical limitations to declining mental performance and productivity for the individual. Government initiatives contribute to decreasing the causes of this disorder; however, these efforts are focused on long term solutions. The need for a fast and reliable way to detect these cases early on still exists. This paper compares classification techniques to determine which one is the most appropriate to classify cases of malnutrition. Neural networks and decision trees are used in combination with different sampling techniques, such as SCUT, SMOTE, random oversampling, random undersampling, and Tomek links. The models produced using oversampling techniques achieved high accuracies. Further, the models produced by the SCUT algorithm achieved high accuracies, preserved the behavior of the data and allowed for better representations of minority classes. The multilayer perceptron model that used the SCUT sampling techniques was chosen as the best model.
Keywords
- Child malnutrition
- Neural networks
- Decision trees
- Random forest
- Sampling techniques
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Agrawal, A., Viktor, H.L., Paquet, E.: SCUT: multi-class imbalanced data classification using SMOTE and cluster-based undersampling. In: Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, vol. 1, pp. 226–234 (2015). https://doi.org/10.5220/0005595502260234
Aruna, S., Sudha, P.: An efficient identification of malnutrition with unsupervised classification using logical decision tree algorithm. Res. J. Pharm. Biol. Chem. Sci. 4(2), 365–373 (2016)
Azarkhish, I., Raoufy, M.R., Gharibzadeh, S.: Artificial intelligence models for predicting iron deficiency anemia and iron serum level based on accessible laboratory data. J. Med. Syst. 36(3), 2057–2061 (2012). https://doi.org/10.1007/s10916-011-9668-3
Batista, G., Prati, R., Monard, C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)
Bullón, C., Astete, R.: Determinantes de la Desnutrición Crónica de los Menores de Tres Años en las Regiones del Perú: Sub-Análisis de la Encuesta Endes 2000. Anales Científicos 77(2), 249 (2016). https://doi.org/10.21704/ac.v77i2.636
Çarkli Yavuz, B., Karagül Yildiz, T., Yurtay, N., Pamuk, Z.: Comparison of K nearest neighbours and regression tree classifiers used with clonal selection algorithm to diagnose haematological diseases. AJIT-e Online Acad. J. Inf. Technol. 5(16), 7 (2014)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. JAIR 16, 321–357 (2002)
Chinchay, K.: Costos Económicos en Salud de la Prevalencia de Desnutrición Crónica en Niños Menores de 5 Años en el Perú en el Período 2007–2013, Lima (2015)
Dalvi, P.T., Vernekar, N.: Anemia detection using ensemble learning techniques and statistical models. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1747–1751. IEEE (2016)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998). https://doi.org/10.1162/089976698300017197
Garcia, L.S., Jave, C.M., Cárdenas, M.E.H., López, P.A., Sánchez, G.B.: Pobreza y desnutrición infantil. PRISMA ONGD (2002)
Instituto Nacional de Estadística e Informática: Desnutrición Crónica Infantil en niñas y niños menores de cinco años disminuyó en 3.1 puntos porcentuales. https://gestion.pe/economia/disminuye-desnutricion-cronica-infantil-pais-revela-inei-114809. Accessed 6 July 2019
Instituto Nacional de Estadística e Informática: Desnutrición Crónica afectó al 12.2% de la población menor de cinco años de edad en el año 2018. https://www.inei.gob.pe/prensa/noticias/desnutricion-cronica-afecto-al-122-de-la-poblacion-menor-de-cinco-anos-de-edad-en-el-ano-2018-11370/. Accessed 6 July 2019
Mariños-Anticona, C., Chaña-Toledo, R., Medina-Osis, J., Vidal-Anzardo, M., Valdez-Huarcaya, W.: Determinantes sociales de la desnutrición cronica infantil en el Perú. Revista Peruana de Epidemiología 18(1), 1–7 (2014)
Markos, Z., Doyore, F., Yifiru, M., Haidar, J.: Predicting under nutrition status of under-five children using data mining techniques: the case of 2011 Ethiopian Demographic and Health Survey. J. Health Med. Inform. 5, 152 (2014)
Mehta, N.M., et al.: American Society for Parenteral and Enteral Nutrition Board of Directors. Defining pediatric malnutrition: a paradigm shift toward etiology-related definitions. J. Parenter. Enter. Nutr. JPEN 37(4), 460–481 (2013)
Ministerio de Salud: Desnutrición Infantil Crónica y sus Determinantes de Riesgo, Lima, Perú, Marzo de 2010
Park, M., Kim, H., Kyung, S.: Knowledge discovery in a community data set: malnutrition among the elderly. Healthc. Inform. Res. 20(1), 30–38 (2014). https://doi.org/10.4258/hir.2014.20.1.30
Prati, R.C., Batista, G.E., Monard, M.C.: Data mining with imbalanced class distributions: concepts and methods. Paper Presented at the IICAI (2009)
Sanap, S.A., Nagori, M., Kshirsagar, V.: Classification of anemia using data mining techniques. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds.) SEMCCO 2011. LNCS, vol. 7077, pp. 113–121. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27242-4_14
Sobrino, M., Gutiérrez, C., Cunha, A.J., Dávila, M., Alarcón, J.: Desnutrición infantil en menores de cinco años: tendencias y factores determinantes. Revista Panamericana de Salud Pública 35(2), 104–122 (2014)
Thangamani, D., Sudha, P.: Identification of malnutrition with use of supervised datamining techniques-decision trees and artificial neural networks. Int. J. Eng. Comput. Sci. 3(9), 8236–8241 (2014)
Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Commun. SMC–6(11), 769–772 (1976)
Wisbaum, W., et al.: DESNUTRICIÓN INFANTIL: Causas, consecuencias y estrategias para su prevención y tratamiento. Unicef, vol. 1, p. 21 (2011). https://old.unicef.es/sites/www.unicef.es/files/Dossierdesnutricion.pdf. Accessed 6 July 2019
World Health Organization: Malnutrición. https://www.who.int/es/news-room/fact-sheets/detail/malnutrition. Accessed 6 July 2019
Ye, F., et al.: Chi-squared automatic interaction detection decision tree analysis of risk factors for infant anemia in Beijing, China. Chin. Med. J. 129(10), 1193–1199 (2016). https://doi.org/10.4103/0366-6999.181955
Yilmaz, Z., Bozkurt, M.R.: Determination of women iron deficiency anemia using neural networks. J. Med. Syst. 36(5), 2941–2945 (2012). https://doi.org/10.1007/s10916-011-9772-4
Yu, C.H., Bhatnagar, M., Hogen, R., Mao, D., Farzindar, A., Dhanireddy, K.: Anemic status prediction using multilayer perceptron neural network model. In: 3rd Global Conference on Artificial Intelligence, GCAI, pp. 213–220 (2017)
Zheng, Z., Cai, Y., Li, Y.: Oversampling method for imbalanced classification. Comput. Inform. 34(5), 1017–1037 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Baraybar-Huambo, J., Gutiérrez-Cárdenas, J. (2020). SCUT Sampling and Classification Algorithms to Identify Levels of Child Malnutrition. In: Lossio-Ventura, J.A., Condori-Fernandez, N., Valverde-Rebaza, J.C. (eds) Information Management and Big Data. SIMBig 2019. Communications in Computer and Information Science, vol 1070. Springer, Cham. https://doi.org/10.1007/978-3-030-46140-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-46140-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46139-3
Online ISBN: 978-3-030-46140-9
eBook Packages: Computer ScienceComputer Science (R0)