Skip to main content

Sharp Interior and Boundary Regularity of the SMGTJ-Equation with Dirichlet or Neumann Boundary Control

  • Conference paper
  • First Online:
Semigroups of Operators – Theory and Applications (SOTA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 325))

Included in the following conference series:

Abstract

We consider the third order (in time) linear equation known as SMGTJ-equation, as defined on a multidimensional bounded domain and subject to either Dirichlet or Neumann boundary control. We then establish corresponding sharp interior and boundary regularity results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves, M., Buriol, C., Ferreira, M., Rivera, J.M., Sepulveda, M., Vera, O.: Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect. JMAA 399, 472–479 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Banasiak, J.: Chaos in Kolmogorov systems with proliferation-general criteria and applications. JMAA 378, 89–97 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Banasiak, J., Moszynski, M.: A generalization of Desch-Schappacher-Webb criteria for chaos. Discrete Contin. Dyn. Syst. 12(5), 959–972 (2005)

    Article  MathSciNet  Google Scholar 

  4. Conejero, J.A., Lizama, C., Ródenas Escribá, F.: Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl. Math. Inf. Sci. 9(N5), 2233–2238 (2015)

    Google Scholar 

  5. Christov, I.: Private Communication

    Google Scholar 

  6. Da Prato, G., Giusti, E.: Una caratterizzazione dei generatori di funzioni coseno astratte. Bollettino dell’Unione Matematica Italiana 22, 357–362 (1967). (in Italian)

    MathSciNet  MATH  Google Scholar 

  7. Desch, W., Schappacher, W., Webb, G.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17, 793–819 (1997)

    Article  MathSciNet  Google Scholar 

  8. Fattorini, H.O..: Ordinary differential equations in linear topological spaces, I. J. Differ. Equ. 5(1), 72–105

    Google Scholar 

  9. H. O. Fattorini, Ordinary differential equations in linear topological spaces, II, J. Diff. Eqns, 6(1), 50-70

    Google Scholar 

  10. Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  11. Fattorini, H.O.: The Cauchy Problem. Encyclopedia of Mathematics and its Applications, p. 636. Addison-Wesley (1983)

    Google Scholar 

  12. Jordan, P.: An analytical study of Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation. Phys. Lett. A 326, 77–84 (2004)

    Article  MathSciNet  Google Scholar 

  13. Jordan, P.: Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons. J. Acoustic Soc. Am. 124(4), 2491–2491 (2008)

    Article  Google Scholar 

  14. Jordan, P.: Private Communication

    Google Scholar 

  15. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybern. 40, 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Kaltenbacher, B., Lasiecka, I., Pospieszalska, M.: Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound. Math. Methods Appl. Sci. 22(11) (2012)

    Google Scholar 

  17. Kisyński, Sur: les équations différentielles dans les espaces de Banach. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Plys. 7, 381–385 (1959). (in French)

    MathSciNet  MATH  Google Scholar 

  18. Kisyński, J.: On second order cauchy’s problem in a Banach space. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Plys. 18(7), 371–374 (1970)

    Google Scholar 

  19. Kisyński, J.: On operator-valued solutions of d’Alembert’s functional equation. I Colloquium Mathematicum 23, 107–114 (1971)

    Google Scholar 

  20. Kisyński, J.: On cosine operator functions and one-parameter groups of operators. Studia Mathematica 44, 93–105 (1972)

    Google Scholar 

  21. Kisyński, J.: On operator-valued solutions of d’Alembert’s functional equation. II Studia Mathematica 42, 43–66 (1972)

    Google Scholar 

  22. Kisyński, J.: Semi-groups of operators and some of their applications to partial differential equations. In: Control Theory and Topics in Functional Analysis (Internat. Sem., Internat. Centre Theoret. Phys., Trieste, 1974), Vienna, International Atomic Energy Agency, vol. 3, pp. 305–405 (1976)

    Google Scholar 

  23. Lasiecka, I., Lions, J.-L., Triggiani, R.: Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65, 149–192 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Lions, J.L., Magenes, E.: Nonhomogeneous Boundary Value Problems and Applications I. Springer, Berlin (1972)

    Google Scholar 

  25. Lasiecka, I., Triggiani, R.: A cosine operator approach to modeling \(L_2(0, T; L_2(\Omega ))\) boundary input hyperbolic equations. Appl. Math. Optimiz. 7, 35–83 (1981)

    Google Scholar 

  26. Lasiecka, I., Triggiani, R.: Regularity of hyperbolic equations under \(L_2(0, T; L_2(\Omega ))\)-Dirichlet boundary terms. Appl. Math. Optimiz. 10, 275–286 (1983)

    Google Scholar 

  27. Lasiecka, I., Triggiani, R.: Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations. J. Differ. Equ. 47, 246–272 (1983)

    Article  MathSciNet  Google Scholar 

  28. Lasiecka, I., Triggiani, R.: Trace regularity of the solutions of the wave equation with homogeneous Neumann boundary conditions and data supported away from the boundary. J. Math. Anal. Appl. 141(1), 49–71 (1989)

    Article  MathSciNet  Google Scholar 

  29. Lasiecka, I., Triggiani, R.: Sharp regularity for mixed second order hyperbolic equations of Neumann type. Part I: The \(L_2\)-boundary case. Ann. Mat. Pura Appl. (4) 157, 285–367 (1990)

    Google Scholar 

  30. Lasiecka, I., Triggiani, R.: Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. II. General boundary data. J. Differ. Equ. 94, 112–164 (1991)

    Google Scholar 

  31. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories, Vol I: abstract parabolic systems (P. 644); Vol II: Abstract hyperbolic systems over a finite time horizon (P. 422). In: Encyclopedia of Mathematics and Its Applications Series. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  32. Lasiecka, I., Triggiani, R.: Exact controllability of the wave equation with Neumann boundary control. Appl. Math. Optimiz. 19(1), 243–290 (1989)

    Article  MathSciNet  Google Scholar 

  33. Moore, F.K., Gibson, W.E.: Propagation of weak disturbances in a gas subject to relaxation effects. J. Aero/Space Sci. 27, 117–127 (1960)

    Google Scholar 

  34. Marchand, R., McDevitt, T., Triggiani, R.: An abstract semigroup approach to the third-order MGT equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability. Math. Methods Appl. Sci. 35, 1896–1929 (2012)

    Article  MathSciNet  Google Scholar 

  35. Nelson, S., Triggiani, R.: Analytic properties of cosine operators. Proceed. AMS 74, 101–104 (1978)

    Article  MathSciNet  Google Scholar 

  36. Sova, M.: Cosine Operator Functions. Rozprawy Matematyczne, vol. 49 (1966)

    Google Scholar 

  37. Stokes, G.G.: An examination of the possible effect of the radiation of heat on the propagation of sound. Philos. Mag. Ser. 1(4), 305–317 (1851)

    Article  Google Scholar 

  38. Tataru, D.: On the regularity of boundary traces for the wave equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze (4) 26, 185-206 (1998)

    Google Scholar 

  39. Thompson, P.A.: Compressible-Fluid Dynamics. McGraw-Hill, New York (1972)

    Book  Google Scholar 

  40. Travis, C.C., Webb, G.: Second order differential equations in Banach space. In: Lakshmikantham, V. (ed.) Nonlinear Equations in Abstract Spaces, pp. 331–361. Academic Press, London (1978)

    Google Scholar 

  41. Triggiani, R.: A Cosine Operator Approach to Modeling Boundary Input Problems for Hyperbolic Systems. Lecture Notes in Control and Information Sciences, vol. 6, pp. 380–390. Springer, Berlin (1978)

    Google Scholar 

  42. Triggiani, R.: Exact boundary controllability on \(L^2(\Omega ) \times H^{-1}(\Omega )\) of the wave equation with Dirichlet boundary control acting on a portion of the boundary \(\partial \Omega \), and related problems. Appl. Math. Optimiz. 18, 241–277 (1988)

    Google Scholar 

Download references

Acknowledgements

The results of the present paper were obtained in Spring 2016, when the author was an invited visitor of the NSF-sponsored Institute of Mathematics and its Applications (IMA), University of Minnesota, Minneapolis, on the occasion of the year-long thematic program “Control Theory and its Applications”, September 1, 2015–June 30, 2016. They were presented by the author at the the following conferences venues: (i) Optimal Control for Evolutionary PDEs, Cortona, Italy, June 20–24, 2016; (ii) Semigroups of Operators: Theory and Applications, Kazimierz Dolny, Poland, September 30-October 5, 2018; (iii) Colloquium at Florida International University, November 2018; (iv) XVIII Workshop on Partial Differential Equations, Petropolis, Brazil, September 2019. The author wishes to thank the IMA for its most efficient hospitality and ideal working conditions. The author is most pleased to join the other participants in celebrating the 85th birthday of Professor Jan Kisynski, whom the author was privileged to meet, and receive much math information from, in the Fall of 1974. Many happy returns to Professor Kisynski!

Research partially supported by the National Science Foundation under Grant DMS 1713506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Triggiani .

Editor information

Editors and Affiliations

Appendices

Appendix A

  1. 1.

    Cosine Operators. While we refer to standard work [6, 10, 11, 17, 22, 36, 40] etc for the topic of cosine operator theory on Banach space, we include here only a few results which are used and invoked in the text with reference to a Hilbert space H (\(H=L^2(\Omega )\) in Part A; \( H=L^2(\Omega )/\mathbb {R}\) in Part B). In line with the text, we let (\(-A\)) be the (strictly positive) self-adjoint infinitesimal generator of a strongly continuous (self-adjoint) cosine operator family \({\mathcal {C}}(t)\) with sine operator \({\mathcal {S}}(t)x = \int \nolimits _0^t {\mathcal {C}}(\tau )x d\tau , x \in H\), with \(A^{\frac{1}{2}}{\mathcal {S}}(t)\) strongly continuous:

    $$\begin{aligned} {\mathcal {S}}(t-\tau ) = {\mathcal {S}}(t) {\mathcal {C}}(\tau ) - {\mathcal {C}}(t){\mathcal {S}}(\tau ) \end{aligned}$$
    (A.1a)
    $$\begin{aligned} {\mathcal {C}}(t-\tau ) = {\mathcal {C}}(t) {\mathcal {C}}(\tau ) - A{\mathcal {S}}(t){\mathcal {S}}(\tau ), \quad \tau , t \in \mathbb {R} \end{aligned}$$
    (A.1b)

    We have

    $$\begin{aligned} \dfrac{d^2 {\mathcal {C}}(t) x}{dt^2} = -A{\mathcal {C}}(t)x, x \in {\mathcal {D}}(A); \qquad \dfrac{d {\mathcal {C}}(t) x}{dt} = -A{\mathcal {S}}(t)x, x \in {\mathcal {D}}(A^{\frac{1}{2}}), \end{aligned}$$
    (A.2)

    \({\mathcal {C}}(t)\) is even on H, \({\mathcal {C}}(0)=I\); \({\mathcal {S}}(t)\) is odd on H, \({\mathcal {S}}(0)=0\). The above formulae (A.2) on H with \(H \supset {\mathcal {D}}(A) \rightarrow H\) can be extended to \([{\mathcal {D}}(A)]'\) with A now the extension \(A_e: H \rightarrow [{\mathcal {D}}(A)]'\), which we still denote by A.

  2. 2.

    Representation formulae of non-homogeneous boundary control for wave (second order hyperbolic) equations [25,26,27, 31, 41], [23, Sect. 3]

    Dirichlet case We return to the Dirichlet non-homogeneous w-problem in (2.15a)–(2.15c). Let D be the Dirichlet map in (2.21a), (2.21b) and \((-A)\) be the Dirichlet Laplacian in (2.2). Then

    $$\begin{aligned} w(t) = A \int \limits _0^t {\mathcal {S}}(t-\tau )Dg(\tau )d\tau ; \quad w_t(t) = A \int \limits _0^t {\mathcal {C}}(t-\tau )Dg(\tau )d\tau . \end{aligned}$$
    (A.3)

    Neumann case We now return to the Neumann non-homogeneous w-problem in (7.5a)–(7.5c). Let N be the Neumann map in (7.17a), (7.17b) and \((-A)\) be the Neumann Laplacian in (7.2). Then

    $$\begin{aligned} w(t) = A \int \limits _0^t {\mathcal {S}}(t-\tau )Ng(\tau )d\tau ; \quad w_t(t) = A \int \limits _0^t {\mathcal {C}}(t-\tau )Ng(\tau )d\tau . \end{aligned}$$
    (A.4)
  3. 3.

    Operator formulae for traces

    Let \((-A)\) be the Dirichlet Laplacian in (2.2) and D the Dirichlet map in (2.21a), (2.21b). Then [41], [29, p. 181]

    $$\begin{aligned} D^* A^* \phi = -\dfrac{\partial \phi }{\partial \nu }, \quad \phi \in {\mathcal {D}}(A), \end{aligned}$$
    (A.5)

    which can be extended to all \(\phi \in H^{\frac{3}{2}+\epsilon }(\Omega ) \cap H_0^1(\Omega ), \epsilon >0\). Let now \((-A)\) be the Neumann Laplacian in (7.2) and N the Neumann map in (7.17a), (7.17b). Then [41], [29, p. 196]

    $$\begin{aligned} N^* A^* \phi = \phi \big |_{\Gamma } \quad \phi \in {\mathcal {D}}(A), \end{aligned}$$
    (A.6)

    which can be extended to all \(\phi \in H^{\frac{3}{2}+\epsilon }(\Omega ) \cap H_0^1(\Omega ), \epsilon >0\), with \(\left. \frac{\partial \phi }{\partial \nu }\right| _{\Gamma } = 0\).

Appendix B The Dual Problem of the Boundary Non-homogeneous Problem (2.1a)–(2.1c). A PDE-Approach

In this Appendix we consider the following two problems:

Problem #1 (2.1a)–(2.1c)

figure ah

Problem #2 With \(T>0\) arbitrary,

figure ai

The v-problem (B.2a)–(B.2d) is dual to the y-problem (B.1a)–(B.1d) for zero I.C.: \(y_0=y_1=y_2=0\), in the sense specified below

Theorem B.1

(i) Under the appropriate regularity assumptions on the data: \(\{y_0,y_1,y_2\}, g\), and \(\{v_0,v_1,v_2\}\)—to be made explicit below—the following identity holds true, where \(\langle \ , \ \rangle _{\Omega }\) denotes the duality pairing with respect to \(H=L^2(\Omega )\) and \(\langle \ , \ \rangle _{\Gamma }\) denotes the duality pairing with respect to \(L^2(\Gamma )\):

$$\begin{aligned} \left\langle y_{tt}(T) + \alpha y_t(T), v_0 \right\rangle _{\Omega } - \left\langle y_{t}(T) + \alpha y(T), v_1 \right\rangle _{\Omega } + \left\langle y(T), v_2 \right\rangle _{\Omega } -b\left\langle y(T), \Delta v_0 \right\rangle _{\Omega } \end{aligned}$$
$$\begin{aligned} + \left\langle y_0, -v_{tt}(0) + \alpha v_t(0) + b\Delta v(0) \right\rangle _{\Omega } + \left\langle y_1, v_{t}(0) - \alpha v(0) \right\rangle _{\Omega } - \left\langle y_2, v(0) \right\rangle _{\Omega } \end{aligned}$$
$$\begin{aligned} - \left\langle c^2 \dfrac{\partial y}{\partial \nu } + b \dfrac{\partial y_t}{\partial \nu }, v \right\rangle _{L^2(\Sigma )} + \left\langle c^2 y + b y_t, \dfrac{\partial v}{\partial \nu } \right\rangle _{L^2(\Sigma )} = 0. \end{aligned}$$
(B.3)

(ii) Consider the Dirichlet non-homogeneous condition (B.1c) with zero I.C. \(y_0=y_1=y_2=0\), coupled with the corresponding homogeneous Dirichlet condition (B.2c). Then identity (B.3) specializes to

$$\begin{aligned} \left\langle y_{tt}(T) + \alpha y_t(T), v_0 \right\rangle _{\Omega } - \left\langle y_{t}(T) + \alpha y(T), v_1 \right\rangle _{\Omega } + \left\langle y(T), v_2 \right\rangle _{\Omega } -b\left\langle y(T), \Delta v_0 \right\rangle _{\Omega } \nonumber \\ = - \left\langle c^2 g + b g_t, \dfrac{\partial v}{\partial \nu } \right\rangle _{L^2(0,T;L^2(\Gamma ))}. \end{aligned}$$
(B.4)

(iii) Consider the Neumann non-homogeneous condition (B.1d) with zero I.C. \(y_0=y_1=y_2=0\), coupled with the corresponding homogeneous Neumann condition (B.2d). Then identity (B.3) specializes to

$$\begin{aligned} \begin{aligned} \left\langle y_{tt}(T) + \alpha y_t(T), v_0 \right\rangle _{\Omega } - \left\langle y_{t}(T) + \alpha y(T), v_1 \right\rangle _{\Omega } + \left\langle y(T), v_2 \right\rangle _{\Omega }&\\ -b\left\langle y(T), \Delta v_0 \right\rangle _{\Omega }&\\ =&\left\langle c^2 g + b g_t, v \right\rangle _{L^2(0,T;L^2(\Gamma ))}. \end{aligned} \end{aligned}$$
(B.5)

Proof

Step 1 Multiply (B.1a) by v and integrate by parts. We obtain:

(B.6)
(B.7)
(B.8)
(B.9)

Step 2 We sum up: and obtain

$$\begin{aligned} \begin{aligned}&\left\langle y_{tt}(T) + \alpha y_{t}(T), v(T)\right\rangle _{\Omega } - \left\langle y_{t}(T) + \alpha y(T), v_t(T)\right\rangle _{\Omega } + \left\langle y(T), v_{tt}(T)\right\rangle _{\Omega } - b\left\langle y(T), \Delta v(T)\right\rangle _{\Omega } \\ +&\left\langle y(0), -v_{tt}(0) + \alpha v_{t}(0) + b\Delta v(0)\right\rangle _{\Omega } + \left\langle y_1, v_{t}(0) - \alpha v(0)\right\rangle _{\Omega } - \left\langle y_2, v(0)\right\rangle _{\Omega } \\ -&\int \limits _Q y \left[ v_{ttt} - \alpha v_{tt} + c^2 \Delta v - b\Delta v_t \right] dQ - \left\langle c^2 \dfrac{\partial y}{\partial \nu } + b \dfrac{\partial y_t}{\partial \nu }, \nu \right\rangle _{L^2(\Sigma )} + \left\langle c^2 y + b y_t, \dfrac{\partial v}{\partial \nu } \right\rangle _{L^2(\Sigma )} = 0. \end{aligned} \end{aligned}$$
(B.10)

Step 3 The \(\displaystyle \int \nolimits _Q\)-term in (B.10) vanishes because of (B.2a). Next, we use the I.C. in (B.2b) for the v-problem at \(t=T\), and identity (B.10) reduces to (B.3). Part (i) is proved.

Step 4 In the Dirichlet case, use \(y\big |_{\Sigma } = 0\) in (B.1c) and \(v\big |_{\Sigma } \equiv g\) in (B.2c). Then, identity (B.3) reduces to identity (B.4).

Step 5 In the Neumann case, use \(\left. \dfrac{\partial y}{\partial \nu }\right| _{\Sigma } = g\) in (B.1d) and \(\left. \dfrac{\partial v}{\partial \nu }\right| _{\Sigma } \equiv 0\) in (B.2d). Then identity (B.3) reduces to identity (B.5).

The next is a preliminary result.

Corollary B.2

With reference to the Dirichlet-Problem # 1 in (B.1a)–(B.1d) with I.C. \(y_0=y_1=y_2=0\) and corresponding Dirichlet Problem # 2 in (B.2a)–(B.2d), assume

$$\begin{aligned} g \in H^1(0,T_1; L^2(\Gamma )), \quad \{v_0, v_1, v_2\} \in U_3 = {\mathcal {D}}(A) \times {\mathcal {D}}(A^{\frac{1}{2}}) \times H. \end{aligned}$$
(B.11)

Then, for any \(t, 0 < t \le T_1\):

$$\begin{aligned} y(t), y_{t}(t), y_{tt}(t) \in H \times [{\mathcal {D}}(A^{\frac{1}{2}})]' \times [{\mathcal {D}}(A)]'. \end{aligned}$$
(B.12)

Proof

We have Theorem 6.1 for any \(0< T_1 < \infty \):

$$\begin{aligned} \{v_0, v_1, v_2\} \in U_3 \Longrightarrow \{v, v_t, v_{tt}\} \in C\left( [0,T_1];U_3 = {\mathcal {D}}(A) \times {\mathcal {D}}(A^{\frac{1}{2}}) \times H\right) \end{aligned}$$
(B.13)

so that just by trace theory

$$\begin{aligned} \dfrac{\partial v}{\partial \nu } \in C\left( [0,T];H^{\frac{1}{2}}(\Gamma )) \right) \end{aligned}$$
(B.14)

Thus, the RHS of identity (B.4) is well defined by (B.11), (B.14), finite on any finite time interval. Here T is an arbitrary point \(0< T \le T_1\). We then focus on the LHS of identity (B.4) to make sure that each term is well defined as a duality pairing w.r.t. \(H=L^2(\Omega )\). We obtain

$$\begin{aligned} \left. \begin{aligned} \left. \begin{aligned} v_2 = v_{tt}(T) \in H&\Longrightarrow y(T) \in H \\[2mm] v_1 = v_{t}(T) \in {\mathcal {D}}(A^{\frac{1}{2}})&\Longrightarrow y_t(T) + \alpha y(T) \in [{\mathcal {D}}(A^{\frac{1}{2}})]' \end{aligned} \right\} \Longrightarrow y_t(T) \in [{\mathcal {D}}(A^{\frac{1}{2}})]' \\[2mm] v_0 = v(T) \in {\mathcal {D}}(A) \Longrightarrow y_{tt}(T) + \alpha y_t(T) \in [{\mathcal {D}}(A)]' \end{aligned}\right\} \Longrightarrow y_{tt}(T) \in [{\mathcal {D}}(A)]'. \end{aligned}$$
(B.15)

This takes care of the first three therms on the LHS of (B.4). Notice then that the fourth term \(\left\langle y(T), \Delta v_0 \right\rangle _{\Omega }\) is likewise automatically well-posed with \(v_0 \in {\mathcal {D}}(A), \Delta v_0 \in H = L^2(\Omega ), y(T) \in H\).\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Triggiani, R. (2020). Sharp Interior and Boundary Regularity of the SMGTJ-Equation with Dirichlet or Neumann Boundary Control. In: Banasiak, J., Bobrowski, A., Lachowicz, M., Tomilov, Y. (eds) Semigroups of Operators – Theory and Applications. SOTA 2018. Springer Proceedings in Mathematics & Statistics, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-46079-2_22

Download citation

Publish with us

Policies and ethics