Skip to main content

Degenerate Nonlinear Semigroups of Operators and Their Applications

  • Conference paper
  • First Online:
Semigroups of Operators – Theory and Applications (SOTA 2018)

Abstract

In this paper, we construct the conditions for the existence of a degenerate nonlinear resolving semigroup of shift operators for a semilinear Sobolev type equation. Based on the phase space method, we find the conditions for the existence of solutions to the Cauchy problem for a semilinear Sobolev type equation. The solutions are defined only on a simple Banach manifold (quasistationary trajectories). Also, we find the conditions under which the solution can be continued in time. The obtained abstract results are illustrated by the Cauchy–Dirichlet problem for the generalized filtration Boussinesq equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clement, P., Heihmans, H.J.A.M.: One-Parameter Semigroups. North-Holland, Amsterdam (1987)

    Google Scholar 

  2. Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, N.Y. (2000)

    Google Scholar 

  3. Goldstein, J.: Semigroups of Linear Operators and Applications. Oxford University Press, N.Y. (1985)

    MATH  Google Scholar 

  4. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhauser, Basel (1995)

    Book  Google Scholar 

  5. Batkai, A., Piazzera, S.: Semigroups for Delay Equations. A.K. Peters, Canada (2005)

    Book  Google Scholar 

  6. Vrabie, I.: \(\rm C_o\)-Semigroups and Applications. North-Holland, Amsterdam (2003)

    Google Scholar 

  7. Favini, A., Tanabe H.: Regularity results and solution semigroups for retarded functional differential equations. Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 10(1), 48–69 (2017). https://doi.org/10.14529/mmp170104 (in Russian)

  8. Banasiak, J., Bobrowski, A.: A semigroup related to a convex combination of boundary conditions obtained as a result of averaging other semigroups. J. Evol. Equ. 15(1), 223–237 (2015)

    Article  MathSciNet  Google Scholar 

  9. Komura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19(4), 493–507 (1967)

    Article  MathSciNet  Google Scholar 

  10. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19(4), 508–520 (1967)

    Article  MathSciNet  Google Scholar 

  11. Brezis, H.: Operateurs Maximaux Monotones et Semigroupes de Contractions Dans Les Espaces de Hubert. North-Holland, Amsterdam (1974)

    Google Scholar 

  12. Crandall, M.G.: An Introduction to Evolution Governed by Accretive Operators. Academic Press, N.Y. (1976)

    Book  Google Scholar 

  13. Dubinskii, Yu.A: Nonlinear elliptic and parabolic equations. J. Soviet Math. 12(5), 475–554 (1979). (in Russian)

    Google Scholar 

  14. Miyadera, I.: Nonlinear Semigroups. American Mathematical Society (1992)

    Google Scholar 

  15. Aulbach, B.: Nguyen van Minh: nonlinear semigroups and the existence and stability of solutions of semilinear nonautonomous evolution equations. Abstract Appl. Anal. 1(4), 351–380 (1996)

    Article  MathSciNet  Google Scholar 

  16. Belleni-Morante, A., McBride, A.: Applied Nonlinear Semigroups. Wiley, Chichester (1998)

    MATH  Google Scholar 

  17. Al’shin, A.B., Korpusov, M.O., Sveshnikov, A.G.: Blow-up in Nonlinear Sobolev Type Equations. Walter de Gruyter & Co., Berlin (2011)

    Book  Google Scholar 

  18. Zamyshlyaeva, A.A.: The higher-order Sobolev-type models. Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 7(2), 5–28 (2014). https://doi.org/10.14529/mmp140201 (in Russian)

  19. Keller, A.V., Zagrebina, S.A.: Some generalizations of the Showalter–Sidorov problem for Sobolev-type models. Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 8(2), 5–23 (2015). https://doi.org/10.14529/mmp150201 (in Russian)

  20. Favini, A., Sviridyuk, G., Sagadeeva, M.: Linear Sobolev type equations with relatively p-radial operators in space of “noises”. Mediter. J. Math. 12(6), 4607–4621 (2016). https://doi.org/10.1007/s00009-016-0765-x

  21. Showalter, R.E.: The Sobolev equation. Appl. Anal. 5(1), 15–22 (1975). https://doi.org/10.1080/00036817508839103

  22. Sviridyuk, G.A.: On the general theory of operator semigroups. Russian Math. Surv. 49(4), 45–74 (1994). https://doi.org/10.1070/RM1994v049n04ABEH002390

  23. Sviridyuk, G.A., Fedorov, V.E.: Linear Sobolev Type Equations and Degenerate Semigroups of Operators. VSP, Utrecht, Boston, Koln, Tokyo (2003)

    Book  Google Scholar 

  24. Favini, A., Sviridyuk, G.A., Zamyshlyaeva, A.A.: One class of Sobolev type equations of higher order with additive “white noise”. Commun. Pure Appl. Anal. 15(1), 185–196 (2016). https://doi.org/10.3934/cpaa.2016.15.185

  25. Favini, A., Zagrebina, S.A., Sviridyuk, G.A.: Multipoint initial-final value problems for dynamical Sobolev-type equations in the space of noises. Electron. J. Differ. Equ. 2018(128), 1–10 (2018). https://doi.org/10.3934/cpaa.2016.15.185

  26. Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. Marcel Dekker Inc., N.Y. (1999)

    MATH  Google Scholar 

  27. Sviridyuk, G.A.: The manifold of solutions of an operator singular pseudoparabolic equation. Proce. USSR Acad. Sci. 289(6), 1315–1318 (1986). (in Russian)

    MathSciNet  Google Scholar 

  28. Sviridyuk, G.A., Kazak, V.O.: The phase space of an initial-boundary value problem for the Hoff equation. Math. Notes 71(1–2), 262–266 (2002). https://doi.org/10.1023/A:101391950060533

  29. Kondyukov, A.O., Sukacheva, T.G.: Phase space of the initial-boundary value problem for the Oskolkov system of highest order. Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 11(4), 67–77 (2018). https://doi.org/10.14529/mmp180405

  30. Sviridyuk, G.A., Manakova, N.A.: Phase space of the Cauchy-Dirichlet problem for the Oskolkov equation of nonlinear filtration. Russian Math. 47(9), 33–38 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Sviridyuk, G.A.: Quasistationary trajectories of semilinear dynamical equations of Sobolev type. Russian Acad. Sci. Izvestiya Math. 42(3), 601–614 (1994)

    Article  MathSciNet  Google Scholar 

  32. Bokareva, T.A., Sviridyuk, G.A.: Whitney folds of the phase spaces of some semilinear equations of Sobolev type. Math. Notes 55(3–4), 237–242 (1994). https://doi.org/10.1007/BF02110776

  33. Manakova, N.A., Sviridyuk, G.A.: Nonclassical equations of mathematical physics. phase space of semilinear Sobolev type equations. Bull. South Ural State Univ. Ser.: Math. Mech. Phys. 8(3), 31–51 (2016). https://doi.org/10.14529/mmph160304 (in Russian)

  34. Manakova, N.A., Gavrilova, O.V.: About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane. Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 11(4), 161–168 (2018). https://doi.org/10.14529/mmp180413

  35. Dzektser, E.S.: The generalization of the equations of motion of groundwater. Proc. USSR Acad. Sci. 5, 1031–1033 (1972). (In Russian)

    Google Scholar 

  36. Sviridyuk, G.A., Semenova, I.N.: Solvability of an inhomogeneous problem for the generalized Boussinesq filtration equations. Differ. Equ. 24(9), 1065–1069 (1988)

    MathSciNet  MATH  Google Scholar 

  37. Gliklikh, Y.E.: Investigation of Leontieff type equations with white noise protect by the methods of mean derivatives of stochastic processes. Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. (13), 24–34 (2012)

    Google Scholar 

  38. Sviridyuk G.A., Manakova N.A.: Dynamic models of Sobolev type with the Showalter–Sidorov condition and additive “noises”. Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Softw. 7(1), 90–103 (2014). (in Russian)

    Google Scholar 

  39. Leng, S.: Introduction to Differentiable Manifolds. Springer, N.Y. (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia V. Vasiuchkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

V. Vasiuchkova, K., Manakova, N.A., Sviridyuk, G.A. (2020). Degenerate Nonlinear Semigroups of Operators and Their Applications. In: Banasiak, J., Bobrowski, A., Lachowicz, M., Tomilov, Y. (eds) Semigroups of Operators – Theory and Applications. SOTA 2018. Springer Proceedings in Mathematics & Statistics, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-46079-2_21

Download citation

Publish with us

Policies and ethics