Skip to main content

Optimal Energy Decay in a One-Dimensional Wave-Heat-Wave System

  • Conference paper
  • First Online:
Semigroups of Operators – Theory and Applications (SOTA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 325))

Included in the following conference series:

Abstract

Harnessing the abstract power of the celebrated result due to Borichev and Tomilov (Math. Ann. 347:455–478, 2010, no. 2), we study the energy decay in a one-dimensional coupled wave-heat-wave system. We obtain a sharp estimate for the rate of energy decay of classical solutions by first proving a growth bound for the resolvent of the semigroup generator and then applying the asymptotic theory of \(C_0\)-semigroups. The present article can be naturally thought of as an extension of a recent paper by Batty, Paunonen, and Seifert (J. Evol. Equ. 16:649–664, 2016) which studied a similar wave-heat system via the same theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems, 2nd edn., Monographs in Mathematics, vol. 96. Birkhäuser/Springer Basel AG, Basel (2011). MR 2798103

    Google Scholar 

  2. Avalos, G., Triggiani, R.: Mathematical analysis of PDE systems which govern fluid-structure interactive phenomena. Bol. Soc. Parana. Mat. (3) 25(1–2), 17–36 (2007). MR 2379673

    Google Scholar 

  3. Batty, C.J.K., Duyckaerts, T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8(4), 765–780 (2008). MR 2460938

    Google Scholar 

  4. Batty, C.J.K., Paunonen, L., Seifert, D.: Optimal energy decay in a one-dimensional coupled wave-heat system. J. Evol. Equ. 16(3), 649–664 (2016). MR 3551240

    Google Scholar 

  5. Batty, C.J.K., Paunonen, L., Seifert, D.: Optimal energy decay for the wave-heat system on a rectangular domain. SIAM J. Math. Anal. 51(2), 808–819 (2019). MR 3928347

    Google Scholar 

  6. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2) (2010), 455–478. MR 2606945

    Google Scholar 

  7. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York (2011). MR 2759829

    Google Scholar 

  8. Franz, S., Waurick, M.: Resolvent estimates and numerical implementation for the homogenisation of one-dimensional periodic mixed type problems. ZAMM Z. Angew. Math. Mech. 98(7), 1284–1294 (2018). MR 3832855

    Google Scholar 

  9. Ng, A.C.S., Seifert, D.: Optimal energy decay in a one-dimensional wave-heat system with infinite heat part. J. Math. Anal. Appl. 482(2), 123563 (2020). MR 4015695

    Google Scholar 

  10. Rozendaal, J., Seifert, D., Stahn, R.: Optimal rates of decay for operator semigroups on Hilbert spaces. Adv. Math. 346, 359–388 (2019). MR 3910799

    Google Scholar 

  11. Trostorff, S.: Exponential stability for linear evolutionary equations. Asymptot. Anal. 85(3-4), 179–197 (2013). MR 3156625

    Google Scholar 

  12. Waurick, M.: Stabilization via homogenization. Appl. Math. Lett. 60, 101–107 (2016). MR 3505860

    Google Scholar 

  13. Zhang, X., Zuazua, E.: Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system. J. Differ. Equ. 204(2), 380–438 (2004). MR 2085542

    Google Scholar 

Download references

Acknowledgements

The author thanks David Seifert and Charles Batty for helpful discussions on the topic of this article and is especially indebted to David for his feedback on several drafts of the same. Heartfelt appreciation goes out to the reviewer as well, who was extremely meticulous in spotting out errors and making suggestions for improvement. Finally, the author is also grateful to the University of Sydney for funding this work through the Barker Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham C. S. Ng .

Editor information

Editors and Affiliations

Appendix—Entries for the Cofactor Matrix C in Sect. 3

Appendix—Entries for the Cofactor Matrix C in Sect. 3

$$\begin{aligned} c_{11}&= -\lambda ^{3/2}[e^{\sqrt{\lambda }}T_+(\lambda ) + e^{-\sqrt{\lambda }}T_-(\lambda )], \\ c_{12}&= \lambda ^2\cosh (\lambda )(e^{\sqrt{\lambda }}T_+ - e^{-\sqrt{\lambda }}T_-), \\ c_{13}&= -\lambda ^2\cosh (\lambda )[e^{\sqrt{\lambda }}T_+(\lambda ) +e^{-\sqrt{\lambda }}T_-(\lambda )], \\ c_{14}&= \lambda ^{3/2} \cosh (\lambda ), \\ c_{21}&= -\lambda [e^{\sqrt{\lambda }}T_+(\lambda ) - e^{-\sqrt{\lambda }}T_-(\lambda )],\\ c_{22}&= -\lambda ^2\sinh (\lambda )[e^{\sqrt{\lambda }}T_+(\lambda ) -e^{-\sqrt{\lambda }}T_-(\lambda )],\\ c_{23}&= \lambda ^2\sinh (\lambda )[e^{\sqrt{\lambda }}T_+(\lambda ) + e^{-\sqrt{\lambda }}T_-(\lambda )],\\ c_{24}&= -\lambda ^{3/2}\sinh (\lambda ), \\ c_{31}&= \lambda ^{3/2}\cosh (\lambda ), \\ c_{32}&= \lambda ^{5/2}\sinh (\lambda )\cosh (\lambda ), \\ c_{33}&= \lambda ^2\cosh ^2(\lambda ), \\ c_{34}&= -\lambda ^{3/2}[e^{\sqrt{\lambda }}T_+(\lambda ) e^{-\sqrt{\lambda }}T_-(\lambda )],\\ c_{41}&= -\lambda ^{3/2}\sinh (\lambda ), \\ c_{42}&= -\lambda ^{5/2} \sinh ^2(\lambda ), \\ c_{43}&= -\lambda ^2\cosh (\lambda )\sinh (\lambda ), \\ c_{44}&= -\lambda [e^{\sqrt{\lambda }}T_+(\lambda ) - e^{-\sqrt{\lambda }}T_-(\lambda )]. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ng, A.C.S. (2020). Optimal Energy Decay in a One-Dimensional Wave-Heat-Wave System. In: Banasiak, J., Bobrowski, A., Lachowicz, M., Tomilov, Y. (eds) Semigroups of Operators – Theory and Applications. SOTA 2018. Springer Proceedings in Mathematics & Statistics, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-46079-2_17

Download citation

Publish with us

Policies and ethics