Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 306 Accesses

Abstract

Motion planning is a core technology for autonomous driving. It must produce safe, human-like and human-aware trajectories in a wide range of driving scenarios. Whilst much progress has been attained in the perception and localization domains, digital representations of the world are still incomplete. As a result, understanding the spatio-temporal relationship between the subject vehicle and the relevant entities whilst constrained by the road network might be very difficult a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artuñedo A, Godoy J, Villagra J (2018) A primitive comparison for traffic-free path planning. IEEE Access 6:28801–28817. ISSN: 2169-3536. https://doi.org/10.1109/ACCESS.2018.2839884

  2. Artuñedo A, Villagra J, Godoy J (2019) Real-time motion planning approach for automated driving in urban environments. IEEE Access 7:180039–180053. ISSN: 2169-3536. https://doi.org/10.1109/ACCESS.2019.2959432

  3. Artuñedo A, Godoy J, Villagra J (2017) A comparison of local path-planning interpolation methods for autonomous driving in urban environments. In: Industriales research meeting 2017. Madrid: ETSII, UPM, Apr. 2017, p 147. ISBN: 978-84-16397-58-7. http://oa.upm.es/46090/

  4. Artuñedo A, Godoy J, Villagra J (2017) Smooth path planning for urban autonomous driving using OpenStreetMaps In: 2017 IEEE intelligent vehicles symposium (IV). IEEE, June 2017, pp 837–842. ISBN: 978-1-5090-4804-5. https://doi.org/10.1109/IVS2017.7995820

  5. Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program Ser B 89.1:149–185. ISSN: 00255610. https://doi.org/10.1007/s101070000189

  6. Digabel S (2011) Algorithm 909: NOMAD: nonlinear Optimization with the MADS algorithm NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans Math Softw (TOMS) 4:44–15. ISBN: 0098-3500. https://doi.org/10.1145/1916461.1916468

  7. Douglas DH, Peucker TK (2011) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. In: Classics in cartography: reflections on influential articles from Cartographica 10.2 (Dec. 2011), pp 15–28. ISSN: 0317-7173. https://doi.org/10.1002/9780470669488.ch2. http://utpjournals.press/doi/10.3138/FM57-6770-U75U-7727

  8. Farin G (2002) 8—B-spline curves. In: Farin G (ed) Curves and surfaces for CAGD (Fifth Edition). Fifth Edition. The Morgan Kaufmann Series in Computer Graphics. San Francisco: Morgan Kaufmann, pp 119–146. ISBN: 978-1-55860-737-8. https://doi.org/10.1016/B978-155860737-8/50008-9

  9. Ganesh M (2008) Basics of computer aided geometric design: an algorithmic approach. I.K. International. ISBN: 9788189866761

    Google Scholar 

  10. Gu T, Snider J, Dolan JM, Lee J-W (2013) Focused Trajectory Planning for autonomous on-road driving. In: 2013 IEEE intelligent vehicles symposium (IV). IEEE, June 2013, pp 547–552. ISBN: 978-1-4673-2755-8. https://doi.org/10.1109/IVS.2013.6629524

  11. Haber RE, Beruvides G, Quiza R, Hernandez A (2017) A simple multi-objective optimization based on the cross-entropy method. IEEE Access 5:22272–22281. ISSN: 2169-3536. https://doi.org/10.1109/ACCESS.2017.2764047. http://ieeexplore.ieee.org/document/8070310/

  12. Hormann K, Agathos A (2001) The point in polygon problem for arbitrary polygons. Comput Geome: Theor Appl 20(3):131–144. ISSN: 09257721. https://doi.org/10.1016/S0925-7721(01)00012-8. https://www.inf.usi.ch/hormann/papers/Hormann.2001.TPI.pdf

  13. Lau B, Sprunk C, Burgard W (2009) Kinodynamic motion planning for mobile robots using splines. In: 2009 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Oct. 2009, pp 2427–2433. ISBN: 978-1-4244-3803-7. https://doi.org/10.1109/IROS.2009.5354805

  14. Levien R, Séquin CH (2009) Interpolating splines: which is the fairest of them all? Comput Aided Des Appl 6(1):91–102. ISSN: 16864360. https://doi.org/10.3722/cadaps.2009.91-102

  15. Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, pp 105–116. ISBN: 978-3-540-35972-2

    Google Scholar 

  16. Opheim H (1981) Smoothing a digitized curve by data reduction methods. In: Encarnacao JL (ed) Proceedings of the international conference. The Eurographics Association, p 127. ISBN: 0444862846. https://doi.org/10.2312/eg.19811012. http://diglib.eg.org/EG/DL/Conf/EG81/papers/EUROGRAPHICS

  17. Zhang Y, Chen H, Waslander SL, Gong J, Xiong G, Yang T, Liu K (2018) Hybrid trajectory planning for autonomous driving in highly constrained environments. IEEE Access 6:32800–32819. ISSN: 2169-3536. https://doi.org/10.1109/ACCESS2018.2845448. https://ieeexplore.ieee.org/document/8375948/

  18. Ziegler J, Stiller C (2010) Fast collision checking for intelligent vehicle motion planning. In: 2010 IEEE intelligent vehicles symposium. IEEE, June 2010, pp 518-522. ISBN:978-1-4244-7866-8. https://doi.org/10.1109/IVS.2010.5547976

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Artuñedo .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Artuñedo, A. (2020). Optimal Trajectory Generation. In: Decision-making Strategies for Automated Driving in Urban Environments. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-45905-5_6

Download citation

Publish with us

Policies and ethics