Skip to main content

Information Stored in a Phage Particle: Lactobacillus delbrueckii Bacteriophage LL-H as a Case

  • Chapter
  • First Online:
  • 1024 Accesses

Abstract

The bacteriophage LL-H, that infects Lactobacillus delbrueckii ssp. lactis, is a typical pac-type double-stranded DNA phage. The genome, of about 34.7 kbp, is packaged inside an icosahedral proteinous capsid of approximately 50 nm diameter; LL-H possesses a 170 nm long noncontractile tail and one tail fiber of 30–35 nm length. This chapter summarizes some of the research data obtained with LL-H since the late 1970s. Here, besides brief considerations of its genomic organization, the major discussion focuses on the biology of LL-H, on its special structural features of prime importance for its survival and infectivity during the period when its DNA is in an inactive state, more precisely during the time that elapses between the DNA packaging and injection steps; during that time interval, the information for the specific phage-host interactions is stored in the phage particle itself. Models on the calcium/magnesium dependent adsorption and injection steps are also discussed for LL-H.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackermann H-W (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  Google Scholar 

  • Ackermann H-W, DuBow MS (1987) Viruses of prokaryotes, General properties of bacteriophages, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Ackermann H-W, Cantor ED, Jarvis AW, Lembke J, Mayo J (1984) New species definitions in phages of Gram-positive cocci. Intervirology 22:181–190

    Article  CAS  Google Scholar 

  • Adam G, Delbrück M (1968) Reduction of dimensionality in biological diffusion processes. In: Rich A, Ravidson N (eds) Structural chemistry and molecular biology. WH Freeman & Co, San Francisco, pp 198–215

    Google Scholar 

  • Alatossava T (1982) Factors affecting in vitro DNA ejection of the Lactobacillus lactis bacteriophage LL-H. J Gen Virol 59:173–175

    Article  CAS  Google Scholar 

  • Alatossava T (1987) Molecular biology of Lactobacillus lactis bacteriophage LL-H (PhD Thesis) Acta Univ Oul A 191. University of Oulu, Oulu

    Google Scholar 

  • Alatossava T (1988) Effects of cellular calcium and magnesium contents on growth of ionophore A23187-treated Lactobacillus lactis. Agric Biol Chem 52:1275–1276

    CAS  Google Scholar 

  • Alatossava T, Pyhtilä M (1980) Characterization of a new Latobacillus lactis bacteriophage. IRCS Med Sci 8:297–298

    CAS  Google Scholar 

  • Alatossava T, Juvonen T, Huhtinen R-L (1983) Effect of cadmium on the infection of Lactobacillus lactis by bacteriophage LL-H. J Gen Virol 64:1623–1627

    Article  CAS  Google Scholar 

  • Alatossava T, Jütte H, Kuhn A, Kellenberger E (1985) Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol 162:413–419

    Article  CAS  Google Scholar 

  • Alatossava T, Jütte H, Seiler H (1987) Transmembrane cation movements during infection of Lactobacillus lactis by bacteriophage LL-H. J Gen Virol 68:1525–1532

    Article  CAS  Google Scholar 

  • Baptista C, Santos MA, Sao-Jose C (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989–4996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayfield OW, Klimuk E, Winkler DC, Hesketh EL, Chechik M, Cheng N, Dykeman EC, Minakhin L, Ranson NA, Severinov K, Steven AC, Antson AA (2019) Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T7 capsids. Proc Natl Acad Sci U S A 116:3556–3561

    Article  CAS  Google Scholar 

  • Boulanger P, Jacquot P, Plancon L, Chami M, Engel A, Parquet C, Herbeuval C, Letellier L (2008) Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities. J Biol Chem 283:13556–13564

    Article  CAS  Google Scholar 

  • Chatterjee S, Rothenberg E (2012) Interaction of bacteriophage λ with its E. coli receptor, LamB. Viruses 4:3162–3178

    Article  CAS  Google Scholar 

  • Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:1–11

    Article  Google Scholar 

  • Forsman P (1994) Genetic variation and evolution of bacteriophages of lactobacilli (PhD Thesis) Acta Univ Oul A 257. University of Oulu, Oulu

    Google Scholar 

  • Forsman P, Alatossava T (1991) Genetic variation of Lactobacillus delbrueckii subsp. lactis bacteriophages isolated from cheese processing plants in Finland. Appl Environ Microbiol 57:1805–1812

    Article  CAS  Google Scholar 

  • Koch HU, Haas R, Fischer W (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcuc aureus. Eur J Biochem 138:357–363

    Article  CAS  Google Scholar 

  • Korolev N, Lyubartsev AP, Rupprecht A, Nordeshiöld L (1999) Competitive binding of Mg2+, Ca2+, Na+, and K+ ions to DNA in oriented DNA fibers: experimental and Monte Carlo simulation results. Biophys J 77:2736–2749

    Article  CAS  Google Scholar 

  • Leforestier A (2013) Polymorphism of DNA conformation inside the bacteriophage capsid. J Biol Phys 39:210–213

    Article  Google Scholar 

  • Li D, Liu T, Zuo X, Li T, Qiu X, Evilevitch A (2015) Ionic switch controls the DNA state in phage λ. Nucl Acids Res 43:6348–6358

    Article  CAS  Google Scholar 

  • Lusk JE, Williams RJP, Kennedy EP (1968) Magnesium and the growth of Escherichia coli. J Biol Chem 243:2618–2624

    CAS  PubMed  Google Scholar 

  • Mikkonen M (1996) Genes and genome of Lactobacillus phage LL-H (PhD Thesis) Acta Univ Oul A 281. University of Oulu, Oulu

    Google Scholar 

  • Mikkonen M, Alatossava T (1994) Characterization of the genome region encoding structural proteins of Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H. Gene 151:53–59

    Article  CAS  Google Scholar 

  • Mikkonen M, Räisänen L, Alatossava T (1996) The early gene region completes the nucleotide sequence of Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H. Gene 175:49–57

    Article  CAS  Google Scholar 

  • Moldovan R, Chapman-McQuiston E, Wu XL (2007) On kinetics of phage adsorption. Biophys J 93:303–315

    Article  CAS  Google Scholar 

  • Molineux IJ, Panja D (2013) Popping the cork: mechanisms of phage genome ejection. Nature Rev Microbiol 11:194–204

    Article  CAS  Google Scholar 

  • Moncany MLJ, Kellenberger E (1981) High magnesium content of Escherichia coli B. Experientia 37:846–847

    Article  CAS  Google Scholar 

  • Munsch-Alatossava P, Alatossava T (2013) The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front Microbiol 4:Article 408

    Article  Google Scholar 

  • Plisson C, White HE, Auzat I, Zafarani A, Sao-José C, Lhuillier S, Tavares P, Orlova EV (2007) Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 26:3720–4728

    Article  CAS  Google Scholar 

  • Räisänen L (2007) Phage-host interactions in Lactobacillus delbrueckii: host recognition and transcription of early phage genes (PhD Thesis) Acta Univ Oul A 484. University of Oulu

    Google Scholar 

  • Räisänen L, Schubert K, Jaakonsaari T, Alatossava T (2004) Characterization of lipoteichoic acids as Lactobacillus delbrueckii phage receptor components. J Bacteriol 186:5529–5532

    Article  Google Scholar 

  • Räisänen L, Draing C, Pfitzenmaier M, Schubert K, Jaakonsaari T, von Aulock S, Hartung T, Alatossava T (2007) Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-Alanyl and α-glucose substitution of poly(glycerophosphate) backbones. J Bacteriol 189:4135–4140

    Article  Google Scholar 

  • Rao V, Feiss M (2015) Mechanisms of DNA packaging by large double-stranded DNA viruses. Ann Rev Virol 2:351–378

    Article  CAS  Google Scholar 

  • Ravin V, Räisänen L, Alatossava T (2002) A conserved C-terminal region in Gp71 of the small isometric-head phage LL-H and ORF474 of the prolate-head phage JCL1032 is implicated in specificity of adsorption of phage to its host, Lactobacillus delbrueckii. J Bacteriol 184:2455–2459

    Article  CAS  Google Scholar 

  • Ravin V, Sasaki T, Räisänen L, Riipinen KA, Alatossava T (2006) Effective plasmid pX3 transduction in Lactobacillus delbrueckii by bacteriophage LL-H. Plasmid 55:184–193

    Article  CAS  Google Scholar 

  • Reichmann NT, Gründling A (2011) Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol Lett 319:97–105

    Article  CAS  Google Scholar 

  • Reichmann NT, Picarra Cassona C, Gründling A (2013) Revised mechanisms of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology 159:1868–1877

    Article  CAS  Google Scholar 

  • Riipinen K-A (2011) Genetic variation and evolution among industrially important Lactobacillus bacteriophages (PhD Thesis) Acta Univ Oul A 589. University of Oulu, Oulu

    Google Scholar 

  • Rismondo J, Percy MG, Gründling A (2018) Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. J Biol Chem 293:3293–3306

    Article  CAS  Google Scholar 

  • Schneewind O, Missiakas D (2017) Lipoteichoic acid synthesis and function in Gram-positive bacteria. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Springer, Cham, pp 163–180

    Google Scholar 

  • Storms ZJ, Sauvageau D (2015) Modeling tailed bacteriophage adsorption: insight into mechanisms. Virology 485:355–362

    Article  CAS  Google Scholar 

  • Trautwetter A, Ritzenthaler P, Alatossava T, Mata-Gilsinger M (1986) Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL-H. J Virol 59:551–555

    Article  CAS  Google Scholar 

  • Vasala A (1998) Characterization of Lactobacillus bacteriophage LL-H genes and proteins having biotechnological interest (PhD Thesis) Acta Univ Oul A 315. University of Oulu, Oulu

    Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapani Alatossava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munsch-Alatossava, P., Alatossava, T. (2020). Information Stored in a Phage Particle: Lactobacillus delbrueckii Bacteriophage LL-H as a Case. In: Witzany, G. (eds) Biocommunication of Phages. Springer, Cham. https://doi.org/10.1007/978-3-030-45885-0_9

Download citation

Publish with us

Policies and ethics