Skip to main content

Phage Protein Interactions in the Inhibition Mechanism of Bacterial Cell

  • Chapter
  • First Online:
Biocommunication of Phages

Abstract

Bacteriophages are one of the most diversified microorganisms and are play an important role in designing effective antibiotics and also acts as the potential antimicrobial agents against the harmful pathogens in number of applications including food processing, biotechnology, and medicine. Due to its inherent ability and specificity, phage-host interactions have been received more attention in the field of research to develop potential antibiotics. The initial attachment of the phages is mediated by several numbers of receptor binding proteins, which significantly recognizes and binds several number of proteins localized in bacterial cell wall. The co-evolution of receptor binding proteins has forced endless adoption in host-phage interaction. Hence, phage may recognize as an alternative drug to prevent the growth of the antibiotic-resistant bacterial infection. This chapter mainly focused on the various receptor proteins of both host and phage and their recognition and proteins involved in phage adsorption and penetration into the host cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2009) Kinetics of phage-mediated biocontrol of Bacteria. Foodborne Pathog Dis 6:807–815

    Article  PubMed  Google Scholar 

  • Abedon ST (2017) Information phage therapy research should report. Pharmaceuticals 10:43

    Article  PubMed Central  CAS  Google Scholar 

  • Ackermann HW (2009) Phage classification and characterization. Methods Mol Biol 501:127–140

    Article  CAS  PubMed  Google Scholar 

  • Arisaka F, Kanamaru S, Leiman P, Rossmann MG (2003) The tail lysozyme complex of bacteriophage T4. Int J Biochem Cell Biol 35:16–21

    Article  CAS  PubMed  Google Scholar 

  • Atterbury RJ, Connerton PL, Dodd CER, Rees CED, Connerton IF (2003) Isolation and characterization of campylobacter bacteriophages from retail poultry. Appl Environ Microbiol 69:4511–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury RJ, Dillon E, Swift C, Connerton PL, Frost JA, Dodd CER, Rees CED, Connerton IF (2005) Correlation of campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl Environ Microbiol 71:4885–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury RJ, Van Bergen MAP, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA (2007) Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73:4543–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae H, Cho Y (2013) Complete genome sequence of Pseudomonas aeruginosa podophage MPK7, which requires type IV pili for infection. Genome Announc 1:1

    Article  Google Scholar 

  • Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63:862–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhshinejad B, Karimi M, Sadeghizadeh M (2014) Bacteriophages and medical oncology: targeted gene therapy of cancer. Med Oncol 31:110

    Article  PubMed  CAS  Google Scholar 

  • Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  CAS  PubMed  Google Scholar 

  • Baptista C, Santos MA, São-José C (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bebeacua C, Tremblay D, Farenc C, Chapot-Chartier MP, Sadovskaya I, van Heel M, Veesler D, Moineau S, Cambillau C (2013) Structure, adsorption to host, and infection mechanism of virulent Lactococcal phage p2. J Virol 87:12302–12312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363

    Google Scholar 

  • Black LW, Showe MK, Steven AC (1994) Morphogenesis of the T4 head. In: Karam JM (ed) Molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 218–258

    Google Scholar 

  • Brüssow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39:213–222

    Article  PubMed  Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bueno E, García P, Martínez B, Rodríguez A (2012) Phage inactivation of staphylococcus aureus in fresh and hard type cheese. Int J Food Microbiol 158:23–27

    Article  PubMed  Google Scholar 

  • Caldentey J, Bamford DH (1992) The lytic enzyme of the Pseudomonas phage f6. Purification and biochemical characterization. Biochim Biophys. Acta Protein Struct Mol Enzymol 1159:44–50

    Article  CAS  Google Scholar 

  • Calendar R, Abedon ST, Young R, Wang IN (2006) Phage lysis the bacteriophages. Oxford University Press, New York, pp 104–125

    Google Scholar 

  • Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML (2005) The generalized transducing Salmonella bacteriophage es18: complete genome sequence and DNA packaging strategy. J Bacteriol 187:1091–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerritelli ME, Trus BL, Smith CS, Cheng N, Conway JF, Steven AC (2003) A second symmetry mismatch at the portal vertex of bacteriophage T7: 8-fold symmetry in the procapsid core. J Mol Biol 327:1–6

    Article  CAS  PubMed  Google Scholar 

  • Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbit A, Wang J, Michel V, Hofnung M (1998) A cluster of charged and aromatic residues in the C-terminal portion of maltoporin participates in sugar binding and uptake. Mol Gen Genet 260:185–192

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Shin H, Lee JH, Ryu S (2013) Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5. Appl Environ Microbiol 79:4829–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani G, Moore SD, Prevelige PE Jr, Johnson JE (2002) Preliminary crystallographic analysis of the bacteriophage P22 portal protein. J Struct Biol 139:46–54

    Article  CAS  PubMed  Google Scholar 

  • Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterial. Trends Biotechnol 24:212–218

    Article  CAS  PubMed  Google Scholar 

  • Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta DB, Arden B, Henning U (1977) Majorprotein of the Escherichia Coli outer cell envelope membrane as bacteriophage receptor. J Bacteriol 131:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daugelavicius R, Cvirkaite V, Gaidelyte A, BakienÄ— E, GabrÄ—naitÄ—-Verkhovskaya R (2005) Bamford DHPenetration of enveloped double-stranded RNA bacteriophages Ï•13 and Ï•6 into Pseudomonas syringae cells. J Virol 79:5017–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davison S, Couture-Tosi E, Candela T, Mock M, Fouet A (2005) Identification of the Bacillus anthracis γ phage receptor. J Bacteriol 187:6742–6749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desiere F, McShan WM, van Sinderen D, Ferretti JJ, Brussow H (2001) Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288:325–341

    Article  CAS  PubMed  Google Scholar 

  • Desvaux M, Parham NJ, Henderson IR (2004) The autotransporter secretion system. Res Microbiol 155:53–60

    Article  CAS  PubMed  Google Scholar 

  • Dieterle ME, Spinelli S, Sadovskaya I, Piuri M, Cambillau C (2017) Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: a novel type of anti-receptor widespread among lactic acid bacteria phages. Mol Microbiol 104:608–620

    Article  CAS  PubMed  Google Scholar 

  • Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins--application approaches. Curr Med Chem 22:1757–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresne K, Paradis-Bleau C (2015) Biology and assembly of the bacterial envelope. Adv Exp Med Biol 883:41–76

    Article  CAS  PubMed  Google Scholar 

  • Farr R, Choi DS, Lee SW (2014) Phage-based nanomaterials for biomedical applications. Acta Biomater 10:1741–1175

    Article  CAS  PubMed  Google Scholar 

  • Fehmel F, Feige U, Niemann H, Stirm S (1975) Escherichia coli capsule bacteriophages VII. Bacteriophage 29-host capsular polysaccharide interactions. J Virol 16:591–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flayhan A, Vellieux FMD, Lurz R, Maury O, Contreras-Martel C, Girard E, Boulanger P, Breyton C (2014) Crystal structure of pb9, the distal tail protein of bacteriophage T5: a conserved structural motif among all Siphophages. J Virol 88:820–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci U S A 101:6003–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fokine A, Leiman PG, Shneider MM, Ahvazi B, Boeshans KM, Steven AC, Black LW, Mesyanzhinov VV, Rossmann MG (2005) Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci U S A 102:7163–7168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fokine A, Battisti AJ, Kostyuchenko VA, Black LW, Rossmann MG (2006) Cryo-EM structure of a bacteriophage T4 gp24 bypass mutant: the evolution of pentameric vertex proteins in icosahedral viruses. J Struct Biol 154:255–259

    Article  CAS  PubMed  Google Scholar 

  • Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S, Wormald PJ (2017) Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol 7:418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, Ghisotti D (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother 62:e02573–e02517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman SD, Genthner FJ, Gentry J, Sobsey MD, Vinje J (2009) Gene mapping and phylogenetic analysis of the complete genome from 30 single-stranded RNA male-specific coliphages (family Leviviridae). J Virol 83:11233–11243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaidelyte A, Cvirkaite-Krupovic V, Daugelavicius R, Bamford JK, Bamford DH (2006) The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol 188:5925–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbe J, Bunk B, Rohde M, Schobert M (2011) Sequencing and characterization of Pseudomonas aeruginosa phage JG004. BMC Microbiol 11:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Doval C, van Raaij MJ (2013) Bacteriophage receptor recognition and nucleic acid transfer. Subcell Biochem 68:489–518

    Article  CAS  PubMed  Google Scholar 

  • German GJ, Misra R (2001) The TolC protein of Escherichia coli serves as a cell-surface receptor for the newly characterized TLS bacteriophage. J Mol Biol 308:579–585

    Article  CAS  PubMed  Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    Article  CAS  PubMed  Google Scholar 

  • Goldberg E, Grinius L, Letellier L (1994) Recognition, attachment and injection. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, pp 347–356

    Google Scholar 

  • Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M, Jensen GJ, Wright ER (2011) Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Natl Acad Sci U S A 108:9963–9968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman B, R Raya, and E. Kutter. 2005. Basic phage biology, p. 29–66. In: E. Kutter and A. Sulakvelidze (eds.), Bacteriophages: biology and application. CRC Press, Boca Raton

    Google Scholar 

  • Hagens S, Blasi U (2003) Genetically modified filamentous phage as bactericidal agents a pilot study. Lett Appl Microbiol 37:318–323

    Article  CAS  PubMed  Google Scholar 

  • Hagens S, Ahsen U, Gabain A (2004) Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 48:3817–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock REW, Braun V (1976) Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and Ï•80 to Escherichia coli. J Bacteriol 125:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashemolhossieni S, Holmes Z, Mutschler B, Henning U (1994) Alterations of receptor specificities of coliphage of the T2 family. J Mol Biol 240:105–110

    Article  Google Scholar 

  • Hatfull GF (2008) Bacteriophage genomics. Curr Opin Microbiol 11:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci U S A 96:2192–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo YJ, Chung IY, Choi KB, Lau GW, Cho YH (2007) Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology 153:2885–2895

    Article  CAS  PubMed  Google Scholar 

  • Ho TD, Slauch JM (2001) OmpC is the receptor for Gifsy-1 and Gifsy-2 bacteriophages of Salmonella. J Bacteriol 183:1495–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson JA, Billington C, Carey-Smith G, Greening G (2005) Bacteriophages as biocontrol agents in food. J Food Prot 68:426–437

    Article  CAS  PubMed  Google Scholar 

  • Huet A, Conway JF, Letellier L, Boulanger P (2010) In vitro assembly of the T-13 procapsid of bacteriophage T5 with its scaffolding domain. J Virol 84:9350–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwashita S, Kanegasaki S (1976) Deacetylation reaction catalyzed by Salmonella phage c341 and its baseplate parts. J Biol Chem 251:5361–5365

    Article  CAS  PubMed  Google Scholar 

  • Jassim SAA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages: the l p iving drugs. World J Microbiol Biotechnol 30:2153–2170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553–557

    Article  CAS  PubMed  Google Scholar 

  • Kaneko J, Narita-Yamada S, Wakabayashi Y, Kamio Y (2009) Identification of ORF636 in phage Ï•SLT carrying panton-valentine leukocidin genes, acting as an adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of Staphylococcus aureus. J Bacteriol 191:4674–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny JG, McGrath S, Fitzgerald GF, van Sinderen D (2004) Bacteriophage Tuc2009 Encodes a Tail-Associated Cell Wall-Degrading Activity. J Bacteriol 186:3480–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp J, Fouts DE, Sozhamannan S (2012) Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2:190–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Koebnik R (1999) Structural and functional roles of the surface exposed loops of the beta-barrel membrane protein OmpA from Escherichia coli. J Bacteriol 181:3688–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutter E, Sulakvelidze A, Guttman B, Raya R, Kutter E (2005) Bacteriophages biology and application bacteriophages biology and application. CRC Press, Boca Raton, pp 29–66

    Google Scholar 

  • Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102:5174–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan T, Liu J, Dubow M, Gros P, Pelletier J (2006) Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 188:1184–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE (2008) Bacteriophage lambda stabilization by auxiliary protein gpD:timing, location, and mechanism of attachment determined by cryoEM. Structure 16:1399–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazareva EB, Smirnov SV, Khvatov VB, Spiridonova TG, Bitkova EE, Darbeeva OS, MaÄ­skaia LM, Parfeniuk RL, Men’shikov DD (2001) Efficacy of bacteriophages in complex treatment of patients with burn wounds. Antibiot Khimioter 46:10–14

    CAS  PubMed  Google Scholar 

  • Leiman PG, Shneider MM (2012) Contractile tail machines of bacteriophages. Adv Exp Med Biol 726:93–114

    Article  CAS  PubMed  Google Scholar 

  • Letellier L, Boulanger P, Plancon L, Jacquot P, Santamaria M (2004) Main features on tailed phage, host recognition and DNA uptake. Front Biosci 9:1228–1339

    Article  CAS  PubMed  Google Scholar 

  • Li X, Koç C, Kühner P, Stierhof YD, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C (2016) An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Sci Rep 6:26455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:205–241

    Article  CAS  PubMed  Google Scholar 

  • Loessner MJ, Kramer K, Ebel F, Scherer S (2002) C−terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high−affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44:335–349

    Article  CAS  PubMed  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106:4629–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubbers MW, Waterfield NR, Beresford TP, Le Page RW, Jarvis AW (1995) Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 61:4348–4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahony J, van Sinderen D (2012) Structural aspects of the interaction of dairy phages with their host Bacteria. Viruses 4:1410–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahony J, Martel B, Tremblay DM, Neve H, Heller KJ, Moineau S, van Sinderen D (2013) Identification of a new P335 subgroup through molecular analysis of lactococcal phages Q33 and BM13. Appl Environ Microbiol 79:4401–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti R, Zurfluh K, Hagens S, Pianezzi J, Klumpp J, Loessner MJ (2013) Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol Microbiol 87:818–834

    Article  CAS  PubMed  Google Scholar 

  • Martínez B, Obeso MJ, Ana Rodríguez A, García P (2008) Nisinbacteriophages cross-resistance in Staphylococcus aureus. Int J Food Microbiol 122:253–258

    Article  PubMed  CAS  Google Scholar 

  • Moak M, Molineux IJ (2000) Role of the Gp16 lytic Transglycosylase motif in bacteriophage T7 Virions at the initiation of infection. Mol Microbiol 37:345–355

    Article  CAS  PubMed  Google Scholar 

  • Molineux IJ, Panja D (2013) Popping the cork: mechanisms of phage genome ejection. Nat Rev Microbiol 11:194–204

    Article  CAS  PubMed  Google Scholar 

  • Muñoz SLD, Koskella B (2014) Bacteria-phage interactions in natural environments. Adv Appl Microbiol 89:135–183

    Article  Google Scholar 

  • Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogen in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129

    Article  CAS  PubMed  Google Scholar 

  • Orlova EV, Dube P, Beckmann E, Zemlin F, Lurz R, Trautner TA, Tavares P, van Heel M (1999) Structure of the 13-fold symmetric portal protein of bacteriophage SPP1. Nat Struct Biol 6:842–846

    Article  CAS  PubMed  Google Scholar 

  • Pell LG, Liu A, Edmonds L, Donaldson LW, Howell PL, Davidson AR (2009) The X-ray crystal structure of the phage λ tail terminator protein reveals the biologically relevant Hexameric ring structure and demonstrates a conserved mechanism of tail termination among diverse long-tailed phages. J Mol Biol 389:938–951

    Article  CAS  PubMed  Google Scholar 

  • Pope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z, Alcoser TA et al (2011) Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS One 6:e16329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rakieten ML, Rakieten TL (1937) Relationships between Staphylococci and Bacilli belonging to the subtilis group as shown by bacteriophage absorption. J Bacteriol 34:285–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raya RR, Varey P, Oot RA, Dyen MR, Callaway TR, Edrington TS, Kutter EM, Brabban AD (2006) Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli 0157:H7 levels in sheep. Appl Environ Microbiol 72:6405–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reske K, Wallenfels B, Jann K (1973) Enzymatic degradation of O-antigenic lipopolysaccharides by coliphage Ω8. Eur J Biochem 36:167–171

    Article  CAS  PubMed  Google Scholar 

  • Ricci V, Piddock LVJ (2010) Exploiting the role of TolC in pathogenicity; identification of a bacteriophage for eradication of Salmonella serovars form poultry. Appl Environ Microbiol 76:1704–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickgauer JP, Fuller DN, Grimes S, Jardine PJ, Anderson DL, Smith DE (2008) Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. Biophys J 94:159–167

    Article  CAS  PubMed  Google Scholar 

  • Rosenwasser S, Ziv C, Creveld SG, Vardi A (2016) Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol 24:821–832

    Article  CAS  PubMed  Google Scholar 

  • Ryan EM, Gorman SP, Donnelly RF, Gilmore BF (2011) Recent advances in bacteriophage therapy how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 63:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Rydman PS, Bamford DH (2000) Bacteriophage PRD1 DNA entry uses a viral membrane-associated Transglycosylase activity. Mol Microbiol 37:356–363

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage fX174 DNA. Nature 265:687–695

    Article  CAS  PubMed  Google Scholar 

  • Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76:5745–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelcher M, Donovan DM, Loessner MJ (2012) Bacteriophage Endolysins as novel antimicrobials. Future Microbiol 7:1147–1171

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj C, Singh P, Singh SK (2014a) Investigations on the interactions of λPhage-derived peptides against the SrtA mechanism in bacillus anthracis. Appl Biochem Biotechnol 172(4):1790–1806

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj C, Bharathi Priya R, Singh SK (2014b) Communication of γ phage Lysin plyG enzymes binding toward SrtA for inhibition of bacillus anthracis: protein–protein interaction and molecular dynamics study. Cell Commun Adhes 21:257–265

    Article  CAS  PubMed  Google Scholar 

  • Sharp R (2011) Bacteriophages: biology and history. J Chem Technol Biotechnol 76:667–672

    Article  Google Scholar 

  • Shaw DRD, Chatterjee AN (1971) O-acetyl groups as a component of the bacteriophage receptor on Staphylococcus aureus cell walls. J Bacteriol 1085:84–85

    Google Scholar 

  • Shin H, Lee J-H, Kim H, Choi Y, Heu S, Ryu S (2012) Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica Serovar typhimurium. PLoS One 7(8):e43392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson DJ, Sacher JC, Szymanski CM (2016) Development of an assay for the identification of receptor binding proteins from bacteriophages. Viruses 8:17

    Article  PubMed Central  CAS  Google Scholar 

  • Singh A, Arutyunov D, Szymanski CM, Evoy S (2012) Bacteriophage based probes for pathogen detection. Analyst 137:3405–3421

    Article  CAS  PubMed  Google Scholar 

  • Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  CAS  PubMed  Google Scholar 

  • Stalin N, Srinivasan P (2016a) Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet Microbiol 207:83–96

    Article  Google Scholar 

  • Stalin N, Srinivasan P (2016b) Molecular characterization of antibiotic resistant Vibrio harveyi isolated from shrimp aquaculture environment in the south east coast of India. Microb Pathog 97:110–118

    Article  CAS  PubMed  Google Scholar 

  • Steinbacher S, Baxa U, Miller S, Weintraub A, Seckler R, Huber R (1996) Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A 93:10584–10588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockdale SR, Mahony J, Courtin P, Chapot-Chartier MP, Pijkeren JP, van Britton RA, Neve H, Heller KJ, Aideh B, Vogensen FK (2013) The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. J Biol Chem 288:5581–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulakvelidze A, Alavidze Z (2001) MINIREVIEW bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55:437–451

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (1999) Polysaccharases for microbial exopoly- saccharides. Carbohydr Polym 38:319–328

    Article  CAS  Google Scholar 

  • Tavares P (2018) The bacteriophage head-to-tail interface. Subcell Biochem 88:305–328

    Article  CAS  PubMed  Google Scholar 

  • Tu AH, Voelker LL, Shen X, Dybvig K (2001) Complete nucleotide sequence of the mycoplasma virus P1 genome. Plasmid 45:122–126

    Article  CAS  PubMed  Google Scholar 

  • Van Alphen L, Havekes L, Lugtenberg B (1977) Major outer membrane protein d of Escherichia coli K12. Purification and in vitro activity of bacteriophage k3 and f-pilus mediated conjugation. FEBS Lett 75:285–290

    Article  PubMed  Google Scholar 

  • Veesler D, Robin G, Lichière J, Auzat I, Tavares P, Bron P, Campanacci V, Cambillau C (2010) Crystal structure of bacteriophage SPP1 distal tail protein (gp19.1) a baseplate hub paradigm in gram-positive infecting phages. J Biol Chem 285:36666–36673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veesler D, Spinelli S, Mahony J, Lichière J, Blangy S, Bricogne G, Legrand P, Ortiz-Lombardia M, Campanacci V, van Sinderen D (2012) Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Proc Natl Acad Sci U S A 109:8954–8958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoef C, de Graaff PJ, Lugtenberg EJJ (1977) Mapping of a gene for a major outer membrane protein of Escherichia coli K12 with the aid of a newly isolated bacteriophage. Mol Gen Genet 150:103–105

    Article  CAS  PubMed  Google Scholar 

  • Vongkamjan K, Switt AM, de Bakker CH, Fortes ED, Wiedmann M (2012) Silage collected from dairy farms harbours an abundance of Listeriaphages with considerable host range and genome size diversity. Appl Environ Microbiol 78:8666–8675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waseh S, Hanifi-Moghaddam P, Coleman R, Masotti M, Ryan S, Foss M, MacKenzie R, Henry M, Szymanski CM, Tanha J (2010) Orally administered P22 phage Tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS One 5:17

    Article  CAS  Google Scholar 

  • Waters EM, Neill DR, Kaman B, Sahota JS, Clokie MRJ, Winstanley C, Kadioglu A (2017) Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 72:666–667

    Article  PubMed  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE (2000) Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289:2129–2133

    Article  CAS  PubMed  Google Scholar 

  • Wikoff WR, Conway JF, Tang J, Lee KK, Gan L, Cheng N (2006) Timeresolved molecular dynamics of bacteriophage HK97 capsid maturation interpreted by electron cryo-microscopy and X-ray crystallography. J Struct Biol 153:300–306

    Article  CAS  PubMed  Google Scholar 

  • Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamit AL, Ostrowski M, Fondevila N, Wigdorovitz A, Romera A, Bratanich AC (2010) Use of phage display peptides libraries for epitope mapping of bovine viral diarrhea virus E2 protein. Res J Immunol 3:31–36

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors Chandrabose Selvaraj and Sanjeev Kumar Singh thankfully acknowledge MHRD – Rashtriya Uchchatar Shiksha Abhiyan (RUSA) Phase 2.0 (grant sanctioned wide letter no. F. 24-51/ 2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, Dt. 09.10.2018).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selvaraj, C., Singh, S.K. (2020). Phage Protein Interactions in the Inhibition Mechanism of Bacterial Cell. In: Witzany, G. (eds) Biocommunication of Phages. Springer, Cham. https://doi.org/10.1007/978-3-030-45885-0_6

Download citation

Publish with us

Policies and ethics