Skip to main content

Phage Communication and the Ecological Implications on Microbial Interactions, Diversity, and Function

  • Chapter
  • First Online:
Biocommunication of Phages

Abstract

Viruses are extraordinarily abundant on Earth, containing a vast reservoir of genetic diversity. Despite the numerical abundance of soil viruses, even the most basic aspects of their ecology are poorly investigated. We know very little concerning the spatial and temporal variability of viral abundance and diversity, rates of viral turnover/production, and host specificity. Viruses in other environments are known to modulate microbial communities and their host processes through viral-mediated cell lysis and/or lysogenic interactions. Thus, the ecological impact of viruses on the community level can depend on whether their reproduction is predominantly lytic or lysogenic. Evidence has emerged suggesting temperate viruses can modulate their reproductive effort (either lytic or lysogenic pathways) based on cell-cell, phage-cell, and phage-phage communication. In this review, recent progress in aspects of phage ecology are discussed with emphasis on phage-bacterial interactions at both molecular and community levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2017) Commentary: communication between viruses guides lysis–lysogeny decisions. Front Microbiol 8:983

    PubMed  PubMed Central  Google Scholar 

  • Allen B, Willner D, Oechel WC, Lipson D (2010) Top-down control of microbial activity and biomass in an Arctic soil ecosystem. Environ Microbiol 12:642–648

    CAS  PubMed  Google Scholar 

  • Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, Amann R, Sullivan MB (2013) Single-cell and population level viral infection dynamics revealed by phage FISH, a method to visualize intracellular and free viruses. Environ Microbiol 15:2306–2318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida RM, Roland F, Cardoso SJ, Farjalla VF, Bozelli RL, Barros NO (2015) Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River. Front Microbiol 6:158

    PubMed  PubMed Central  Google Scholar 

  • Amossé J, Bettarel Y, Bouvier C, Bouvier T, Duc TT, Thu TD, Jouquet P (2013) The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost). Soil Biol Biochem 66:197–203

    Google Scholar 

  • Ballaud F, Dufresne A, Francez AJ, Colombet J, Sime-Ngando T, Quaiser A (2016) Dynamics of viral abundance and diversity in a sphagnum-dominated peatland: temporal fluctuations prevail over habitat. Front Microbiol 6:1494

    PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284

    CAS  PubMed  Google Scholar 

  • Breitbart M, Bonnain C, Malki K, Sawaya NA (2018) Phage puppet masters of the marine microbial realm. Nat Microbiol 3:754–766

    CAS  PubMed  Google Scholar 

  • Brum JR, Sullivan MB (2015) Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol 13:147–159

    CAS  PubMed  Google Scholar 

  • Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB (2016) Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J 10:437–449

    CAS  PubMed  Google Scholar 

  • Chow CET, Kim DY, Sachdeva R et al (2014) Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J 8:816–829

    Google Scholar 

  • Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45

    PubMed  PubMed Central  Google Scholar 

  • Coloma SE, Dienstbier A, Bamford DH, Sivonen K, Roine E, Hiltunen T (2017) Newly isolated Nodularia phage influences cyanobacterial community dynamics. Environ Microbiol 19:273–286

    CAS  PubMed  Google Scholar 

  • Coloma S, Gaedke U, Sivonen K, Hiltunen T (2019) Frequency of virus-resistant hosts determines experimental community dynamics. Ecology 100:e02554

    PubMed  Google Scholar 

  • Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CP et al (2017) Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun 8:15955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho FH, Gregoracci GB, Walter JM, Thompson CC, Thompson FL (2018) Metagenomics sheds light on the ecology of marine microbes and their viruses. Trends Microbiol 11:955–965

    Google Scholar 

  • Daly RA, Roux S, Borton MA, Morgan DM, Johnston MD, Booker AE et al (2019) Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat Microbiol 4:352–361

    CAS  PubMed  Google Scholar 

  • Danovaro R, Serresi M (2000) Viral density and virus-to-bacterium ratio in deep-sea sediments of the eastern Mediterranean. Appl Environ Microbiol 66:1857–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danovaro R, Corinaldesi C, Dell’Anno A, Fabiano M, Corselli C (2005) Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environ Microbiol 7:586–592

    CAS  PubMed  Google Scholar 

  • De Sordi L, Lourenço M, Debarbieux L (2019) The battle within: interactions of bacteriophages and Bacteria in the gastrointestinal tract. Cell Host Microbe 25:210–218

    PubMed  Google Scholar 

  • del Sol FG, Penadés JR, Marina A (2019) Deciphering the molecular mechanism underpinning phage arbitrium communication systems. Mol Cell 74:59–72

    Google Scholar 

  • Díaz-Muñoz SL, Koskella B (2014) Bacteria–phage interactions in natural environments. In: Gadd G, Sariaslani S (eds) Advances in applied microbiology, vol 89. Academic, San Diego, pp 135–183

    Google Scholar 

  • Díaz-Muñoz SL, Sanjuán R, West S (2017) Conflict, cooperation, and communication among viruses. Cell Host Microbe 22:437–441

    PubMed  PubMed Central  Google Scholar 

  • Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y et al (2018) Structural and functional insights into the regulation of the lysis–lysogeny decision in viral communities. Nat Microbiol 3:1285–1294

    CAS  PubMed  Google Scholar 

  • Dy RL, Richter C, Salmond GP, Fineran PC (2014) Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol 1:307–331

    PubMed  Google Scholar 

  • Edwards RA, McNair K, Faust K, Raes J, Dutilh BE (2016) Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol Rev 40:258–272

    CAS  PubMed  Google Scholar 

  • Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB et al (2018) Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol 3:870–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA (2017) Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J 11:237–247

    CAS  PubMed  Google Scholar 

  • Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y et al (2017) Communication between viruses guides lysis–lysogeny decisions. Nature 541:488–593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA (2015) A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 13:641–650

    CAS  PubMed  Google Scholar 

  • Finke JF, Hunt BP, Winter C, Carmack EC, Suttle CA (2017) Nutrients and other environmental factors influence virus abundances across oxic and hypoxic marine environments. Viruses 9:152

    PubMed Central  Google Scholar 

  • Gainer PJ, Pound HL, Larkin AA, LeCleir GR, DeBruyn JM, Zinser ER, Johnson ZI, Wilhelm SW (2017) Contrasting seasonal drivers of virus abundance and production in the North Pacific Ocean. PLoS One 12:e0184371

    PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Roy K, Williamson KE, White DC, Wommack KE, Sublette KL et al (2008) Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74:495–502

    CAS  PubMed  Google Scholar 

  • Ghosh D, Roy K, Williamson KE, Srinivasiah S, Wommack KE, Radosevich M (2009) Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction. Appl Environ Microbiol 75:7142–7152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg GW, Jiang W, Bikard D, Marraffini LA (2014) Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109

    PubMed  Google Scholar 

  • Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A et al (2019) Marine DNA viral macro-and microdiversity from pole to pole. Cell 177:1109–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB et al (2018) Understanding how microbiomes influence the systems they inhabit. Nat Microbiol 3:977–982

    CAS  PubMed  Google Scholar 

  • Hewson I, O’Neil JM, Fuhrman JA, Dennison WC (2001) Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr 46:1734–1746

    Google Scholar 

  • Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:1511–1520

    PubMed  PubMed Central  Google Scholar 

  • Høyland-Kroghsbo NM, Mærkedahl RB, Svenningsen SL (2013) A quorum-sensing-induced bacteriophage defense mechanism. MBio 4:e00362–e00312

    PubMed  PubMed Central  Google Scholar 

  • Høyland-Kroghsbo NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E, Bondy-Denomy J, Bassler BL (2017) Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc Natl Acad Sci U S A 114:131–135

    PubMed  Google Scholar 

  • Junger PC, Amando AM et al (2017) Salinity drives the virioplankton abundance but not production in tropical coastal lagoons. Microbial Ecol 75:52–63

    Google Scholar 

  • Keshri J, Ram ASP, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T (2017) Differential impact of lytic viruses on the taxonomical resolution of freshwater bacterioplankton community structure. Water Res 124:129–138

    CAS  PubMed  Google Scholar 

  • Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG et al (2016) Lytic to temperate switching of viral communities. Nature 531:466–470

    CAS  PubMed  Google Scholar 

  • Knowles B, Bailey B, Boling L, Breitbart M, Cobián-Güemes A, del Campo J et al (2017) Variability and host density independence in inductions-based estimates of environmental lysogeny. Nat Microbiol 2:17064

    CAS  PubMed  Google Scholar 

  • Koskella B, Brockhurst MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38:916–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle JE, Eydal HS, Ferris FG, Pedersen K (2008) Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J 2:571–574

    PubMed  Google Scholar 

  • Letarov A, Kulikov E (2009) The bacteriophages in human-and animal body-associated microbial communities. J Appl Microbiol 107:1–13

    CAS  PubMed  Google Scholar 

  • Liang X, Radosevich M (2019) Commentary: a host-produced quorum-sensing autoinducer controls a phage lysis-Lysogeny decision. Front Microbiol 10:1201

    PubMed  PubMed Central  Google Scholar 

  • Liang X, Zhuang J, Löffler FE, Zhang Y, DeBruyn J, Wilhelm S, Schaeffer SM, Radosevich M (2019a) Viral and bacterial community responses to stimulated Fe(III)-bioreduction during simulated subsurface bioremediation. Environ Microbiol 21:2043–2055

    CAS  PubMed  Google Scholar 

  • Liang X, Wagner RE, Li B, Zhang N, Radosevich M (2019b) Prophage induction mediated by quorum sensing signals alters soil bacterial community structure. bioRxiv:805069

    Google Scholar 

  • Liang X, Wagner RE, Zhuang J, DeBruyn JM, Wilhelm SW, Liu F, Yang L, Staton ME, Sherfy AC, Radosevich M (2019c) Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol. Soil Biol Biochem 137:107546

    CAS  Google Scholar 

  • Louca S, Doebeli M (2018) Taxonomic variability and functional stability in microbial communities infected by phages. Environ Microbiol 19:3863–3878

    Google Scholar 

  • Manini E, Luna GM, Corinaldesi C, Zeppilli D, Bortoluzzi G, Caramanna G, Raffa F, Danovaro R (2008) Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (North Sulawesi-Indonesia). Microb Ecol 55:626–639

    CAS  PubMed  Google Scholar 

  • Mojica KD, Brussaard CP (2014) Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol Ecol 89:495–515

    CAS  PubMed  Google Scholar 

  • Morella NM, Gomez AL, Wang G, Leung MS, Koskella B (2018) The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol Ecol 27:2025–2038

    PubMed  Google Scholar 

  • Moreno-Gallego JL, Chou SP, Di Rienzi SC, Goodrich JK, Spector TD, Bell JT, Youngblut ND, Hewson I, Reyes A, Ley RE (2019) Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 25:261–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narr A, Nawaz A, Lukus LY, et al (2017) Soil viral vommunities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Frontiers Terrestrial Microbiol 8:Article 175

    Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ofir G, Sorek R (2018) Contemporary phage biology: from classic models to new insights. Cell 172:1260–1270

    CAS  PubMed  Google Scholar 

  • Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC (2016) Uncovering Earth’s virome. Nature 536:425–430

    CAS  PubMed  Google Scholar 

  • Pan D, Nolan J, Williams KH, Robbins MJ, Weber KA (2017) Abundance and distribution of microbial cells and viruses in an alluvial aquifer. Front Microbiol 8:1199

    PubMed  PubMed Central  Google Scholar 

  • Parikka KJ, Le Romancer M, Wauters N, Jacquet S (2017) Deciphering the virus-to-prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. Biol Rev 92:1081–1100

    PubMed  Google Scholar 

  • Patterson AG, Jackson SA, Taylor C, Evans GB, Salmond GP, Przybilski R, Staals RH, Fineran PC (2016) Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol Cell 64:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payet JP, Suttle CA (2013) To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol Oceanogr 58:465–474

    Google Scholar 

  • Roucourt B, Lavigne R (2009) The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol 11:2789–2805

    CAS  PubMed  Google Scholar 

  • Roux S, Enault F, Hurwitz BL, Sullivan MB (2015a) VirSorter: mining viral signal from microbial genomic data. PeerJ 3:e985

    PubMed  PubMed Central  Google Scholar 

  • Roux S, Hallam SJ, Woyke T, Sullivan MB (2015b) Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. elife 4:e08490

    PubMed Central  Google Scholar 

  • Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A et al (2016) Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537:689–693

    CAS  PubMed  Google Scholar 

  • Scanlan PD (2017) Bacteria–bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends Microbiol 25:614–623

    CAS  PubMed  Google Scholar 

  • Seed KD (2015) Battling phages: how bacteria defend against viral attack. PLoS Pathog 11:e1004847

    PubMed  PubMed Central  Google Scholar 

  • Segobola J, Adriaenssens E, Tsekoa T, Rashamuse K, Cowan D (2018) Exploring viral diversity in a unique south African soil habitat. Sci Rep 8:111

    PubMed  PubMed Central  Google Scholar 

  • Silpe JE, Bassler BL (2019) A host-produced quorum-sensing autoinducer controls a phage lysis-Lysogeny decision. Cell 176:1–13

    Google Scholar 

  • Silveira CB, Rohwer FL (2016) Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiol 2:16010

    Google Scholar 

  • Steffen MM, Belisle BS, Watson SB, Boyer GL, Bourbonniere RA, Wilhelm SW (2015) Metatranscriptomic evidence for co-occurring top-down and bottom-up controls on toxic cyanobacterial communities. Appl Environ Microbiol 81:3268–3276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storesund JE, Erga SR, Ray JL, Thingstad TF, Sandaa RA (2015) Top-down and bottom-up control on bacterial diversity in a western Norwegian deep-silled fjord. FEMS Microbiol Ecol 91:fiv076

    PubMed  Google Scholar 

  • Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333:58–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    CAS  PubMed  Google Scholar 

  • Thomas R, Berdjeb L, Sime-Ngando T, Jacquet S (2011) Viral abundance, production, decay rates and life strategies (lysogeny versus lysis) in Lake Bourget (France). Environ Microbiol 13:616–630

    CAS  PubMed  Google Scholar 

  • Touchon M, Bernheim A, Rocha EP (2016) Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J 10:2744–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Solden L, Ellenbogen J, Runyon AT, Bolduc B, Woodcroft BJ (2018) Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3:e00076–e00018

    CAS  PubMed  PubMed Central  Google Scholar 

  • VÃ¥ge S, Pree B, Thingstad TF (2016) Linking internal and external bacterial community control gives mechanistic framework for pelagic virus-to-bacteria ratios. Environ Microbiol 18:3932–3948

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Guan Z, Pei K, Wang J, Liu Z, Yin P, Peng D, Zou T (2018) Structural basis of the arbitrium peptide–AimR communication system in the phage lysis–lysogeny decision. Nat Microbiol 3:1266–1273

    CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev Cell Dev Biol 21:319–346

    CAS  Google Scholar 

  • Weitz JS, Wilhelm SW (2012) Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep 4:17

    PubMed  PubMed Central  Google Scholar 

  • Weitz JS, Mileyko Y, Joh RI, Voit EO (2008) Collective decision making in bacterial viruses. Biophys J 95:2673–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weitz JS, Beckett SJ, Brum JR, Cael BB, Dushoff J (2017) Lysis, lysogeny and virus–microbe ratios. Nature 549:E1–E3

    CAS  PubMed  Google Scholar 

  • Wigington CH, Sonderegger D, Brussaard CP, Buchan A, Finke JF, Fuhrman JA et al (2016) Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol 1:15024

    CAS  PubMed  Google Scholar 

  • Wilhartitz IC, Kirschner AK, Brussaard CP, Fischer UR, Wieltschnig C, Stadler H, Farnleitner AH (2013) Dynamics of natural prokaryotes, viruses, and heterotrophic nanoflagellates in alpine karstic groundwater. Microbiology 2:633–643

    CAS  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    CAS  PubMed  Google Scholar 

  • Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR (2013) Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils 49:857–869

    Google Scholar 

  • Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219

    CAS  PubMed  Google Scholar 

  • Zeng L, Skinner SO, Zong C, Sippy J, Feiss M, Golding I (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141:682–691

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Radosevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, X., Radosevich, M. (2020). Phage Communication and the Ecological Implications on Microbial Interactions, Diversity, and Function. In: Witzany, G. (eds) Biocommunication of Phages. Springer, Cham. https://doi.org/10.1007/978-3-030-45885-0_3

Download citation

Publish with us

Policies and ethics